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Abstract

We present the Earthquake Detective dataset - A crowdsourced set of labels on
potentially triggered (PT) earthquakes and tremors. These events are those which
may have been triggered by large magnitude and often distant earthquakes. We
apply Machine Learning to classify these PT seismic events and explore the chal-
lenges faced in segregating such low amplitude signals. The data set and code are
available online.12

1 Introduction

While the vast majority of earthquakes do not directly impact people, some earthquakes cause injuries,
damage, or worse. Both types of earthquakes are part of the same statistical Pareto distribution, called
the Gutenberg-Richter law (Gutenberg and Richter, 1954). This empirical law states that for every
magnitude (M) 8 earthquake that occurs, 100 M6, 10,000 M4, and 1 million M2 earthquakes occur.
Therefore, the abundance of low-magnitude earthquakes of the kind whose signals are often buried
in background seismic noise, provides insights into the occurrence of the much more infrequent,
damaging earthquakes.

Likewise, a class of so-called low-frequency earthquakes exists that represent slower slip between
two blocks of rock than that during classical earthquakes, but nevertheless generates weak seismic
signals that are often labeled as "tremor" (Obara, 2002), especially when many of such events occur
quasi-simultaneously.

Both types of weak signals (from tremor and from low-magnitude local earthquakes) are both
abundant (Rouet-Leduc et al., 2018; Hill and Prejean, 2015) and somewhat under-reported because
they have been hard to detect. Past barriers to detection have included a sparse spatial distribution of

1https://www.zooniverse.org/projects/vivitang/earthquake-detective
2https://github.com/Omkar-Ranadive/Earthquake-Detective
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Figure 1: Example data plots shown to users on Earthquake Detective platform

seismic stations (instrumented with buried seismometers), and current barriers include the weakness
of the seismic signals.

Our interests lie in detecting a special sub-class of these seismic events, namely local earthquakes
and tremor that could have been triggered by slowly-oscillating large-amplitude seismic surface
waves from large-magnitude and often distant earthquakes. Reporting and learning more about such
Potentially Triggered (PT) events extends the spectrum of earthquake data available for study and
adds information about how earthquakes might nucleate. In our quest to detect PT seismic events we
face a number of additional challenges:

• The magnitudes (M) of PT earthquakes are typically below the M of completeness of
earthquake catalogs, hence their signals are weak and often buried in ambient seismic noise
signals, and there is no large database of template waveforms available for such low-M
events. Signals from low-M events are not only lower in amplitude than those from higher-M
events but also have narrower bandwidths.

• Even after high- or band-pass filtering, signals from PT tremor have different waveforms
than those from typical tremor on account of the former signals being modulated by the
surface waves (Chao et al., 2012). Therefore, a large database of template signals is not
available for training or other purposes, although a catalog has been started (Kano et al.,
2018).

• A signal from a PT event can arrive at any time during the surface wave signal, which is
much longer in duration than the former signal. We have been considering up to 33 minutes
of surface wave duration in labeling whether or not at least one local earthquake or tremor
signal was recorded.

• Non-stationary noise signals are often comparable in amplitude and duration to the relatively
weak signals of the PT events we are interested in.
• Optimal and accurate detection of signals from PT events requires a multi-scale, multi-band,

multi-component interactive analysis that is labor-intensive. The formation of a labeled data
set for training purposes is hence not straightforward.

2 Related Work

Using Machine Learning (ML) in the detection of signals from seismic activity is a relatively new
and rapidly growing field. Several ML algorithms have successfully been trained to detect signals
from local earthquakes (e.g. Ross et al. (2018), Tang et al. (2020b)) and Liu et al. (2019) used ML to
detect tremor signals.

3 Earthquake Detective

Earthquake Detective is a crowdsourcing platform where volunteers are shown a graph of vertical
ground velocity vs. time (Figure 1) along with a sonification of the signal, and are asked to classify
the data as Earthquake/Tremor/Noise/None of the above. The platform currently has over 6000+
volunteers and 130k+ classifications. Tang et al. (2020a) present an analysis of how the volunteers
and seismologists engage with the data.
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Figure 2: WavImg Model Architecture

All raw input data are time series of waveforms with durations of 2000 s, which are long enough
to contain the time window needed by teleseismic surface waves to pass through. The raw data is
demeaned, band-pass filtered between 2-8 Hz with a 2-pole Butterworth filter, deconvolved with the
instrument response to convert digital counts to physical units of ground velocity, and resampled at
20 samples per second.

4 Approach

4.1 Wavelet Scattering Transform

The wavelet scattering transform decomposes a signal using a family of wavelets. This new represen-
tation is stable against deformations and is translation invariant. This family of wavelets does not
need to be learned and hence, the features can be extracted without training which can then be passed
on further to Machine Learning models (Oyallon et al., 2013). The Scattering Transform has been
successfully used by Seydoux et al. (2020) for clustering earthquakes in an unsupervised fashion.
The scattering transform works by successively convolving wavelets with the signal and applying
modulus non-linearity at each step. This can be shown as follows:

Sx(t) = ||x ∗ ψλ1| ∗ ψλ2|...| ∗ ψλm| ∗ φ (1)

where Sx(t) is the set of scattering coefficients obtained at step m, x(t) is the signal, ψλm
(t) denotes

the set of wavelets at step m and φ(t) is a low-pass filter.

In our experiments, we use the Kymatio library(Andreux et al., 2020) to perform the scattering
transform and get a set of features which are passed on further to our supervised neural network
model.

4.2 Convolution over 3-channel plots

As the volunteers classify the data based on plots and associated audio records of vertical ground
motion, we decided to try out a similar approach with our model. Along with the wavelet coefficients,
we additionally provide the model with 3-channel plots (BHZ, BHE, BHN) as input. Image convolu-
tion is applied over the 3-channel plots and the resultant features are concatenated with the wavelet
coefficients and then passed through a fully connected neural network (FCN).

5 Experiments

For all experiments, we use the following hyper parameters: learning rate = 1e-5, batch size = 100,
epochs = 300. We perform a 3-way classification between Earthquakes/Tremors/Noise. As the
number of tremor samples is considerably less, we apply a weighted cross-entropy loss where the
weights are calculated as follows:

wi = Nlargest/Ni (2)
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Figure 3: Model comparison chart. (C = Clean, CG = Clean+Gold, All = Clean+Gold+Volunteer)

where wi is the weight assigned to class i, Nlargest is the number of samples of the largest class and
Ni is the number of samples of class i. For all experiments, we perform a 80-20 stratified train/test
split of the data.

We test two models:

• WavNet: In this model, we perform a wavelet scattering transform on 3-channel seismic
data (BHZ, BHN, BHE) and extract relevant features from it. These features (wavelet
coefficients) are then passed on to a 2-layer fully connected network.

• WavImg: This model combines the Wavelet Scattering Transform with 3-channel convolu-
tion over the image plots. The combined features are then passed on through a 2-layer fully
connected network. (Figure 2)

5.1 Training the Machine Learning model

Training on clean data: To test the efficacy of wavelet transform, we first run a simple experiment
with WavNet. As an upper baseline, we first ran the experiment on clean data (data cleaned and
filtered by our seismologists, refer Appendix A). The model converges to 95.2% training and a 94.4%
testing accuracy.

Training on clean + gold users data: Compared to the clean data, the data from the Earthquake
Detective is difficult to segregate due to its low amplitude signals and larger time window (∼33 mins).
For this experiment, we consider data from gold users (Earthquake Detective data labeled by our
experts) and combine it with the clean dataset from the previous experiment. When this data was
trained on the WavNet, it gave a train accuracy of 75.4% and a test accuracy of 74.9%. Next, we
trained the same data using the WavImg model. This model produces a 91.4% train and 89.6% test
accuracy.

Training on clean + gold + volunteer’s data: Finally, we combine the previous data with data from
two volunteers. For each volunteer, we calculated a reliability score which includes a precision, recall
and f1 score for each class. These scores were calculated by comparing volunteer’s classification with
gold-set labeled by our experts. To handle the unreliability introduced in labels, we add an additional
gold-test set which consists of samples labeled from our gold users that were not used for training.
WavImg produces a 80.1% train accuracy, 83.6% test accuracy and 90.4% gold-test accuracy.

5.2 Results and Analysis

The WavNet model was able to perform extremely well on the clean data (95% accuracy) which
proves that wavelet scattering transform extracts relevant features which can then be trained using a
simple 2-layer FCN. However, due to the greater complexity of Earthquake Detective data, WavNet
by itself is insufficient. The WavImg model overcomes this problem by using information from
3-channel plots. One interesting case was the last experiment in which there was variance in training
due to label uncertainty (80% accuracy) but the model still performed well on the gold-test set (90.4%
accuracy). (Figure 3) This shows that the model still ends up learning useful representations despite
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the uncertainty of the labels. For more in-depth analysis over select misclassified samples refer to
Appendix B.

6 Conclusion

The Earthquake Detective dataset is the first crowdsourced dataset for PT local earthquake and tremor
signals. This is also the first time that PT tremor signals were used in and detected by ML. Our
experiments provide ML baselines for the data. However, we trained our models on a small subset
of the 130k+ samples available. Therefore, when all of the data is considered, better techniques to
incorporate reliability scores into the model will be required. We hope that this dataset will be used
by researchers as a catalog for potentially triggered seismic events.

Broader Impact

This work might facilitate work by research seismologists, seismic network operators, and seismic
monitoring agencies and ultimately result in reducing risks posed by damaging earthquakes. Other
impacts include the engagement of volunteer scientists, via Earthquake Detective, with informal
STEM learning and analyzing authentic data.
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Appendix A: Data

Clean Data

The clean data used in the experiments was created as follows:

1. A set of 1000 s-long waveforms with confirmed PT tremor signals, labeled by the seismolo-
gists among us. The waveforms were resampled at 20 samples per second and band-pass
filtered between 2 and 5 Hz. This data set is subdivided as follows:
(a) Waveforms recorded by seismic stations in Taiwan or Japan, trimmed around surface

waves from 6 large-M earthquakes in the eastern hemisphere (the Great Tohoku Earth-
quake, 1 more earthquake from Hokkaido, Japan, 1 from Qinghai, China, and 4 from
Sumatra, Indonesia). These are the positive examples.

(b) Waveforms recorded by seismic stations in Taiwan, Malaysia, Australia, and of the
Global Seismographic Network (GSN), selected for having no significant signals from
earthquakes or otherwise. These are the negative examples.

2. A set of 1000 s-long waveforms with confirmed PT local earthquake signals, labeled by the
seismologists among us. All data was band-pass filtered between 2 and 8 Hz.
(a) Waveforms recorded by seismic stations from USArray in the USA and the Hi-CLIMB

array in Tibet, trimmed around surface waves from the 2010 M8.8 Maule Earthquake
and 7 additional large-M earthquakes in the eastern hemisphere (1 from China, 1 from
Japan, and 5 from Sumatra, Indonesia). Waveforms that showed signals from local
earthquakes were labeled as positive.

(b) The waveforms from this set (2a) that were not labeled positive - they were labeled as
negative examples.

(c) Additional waveforms recorded by the Hi-CLIMB array from 10 random local earth-
quakes with M<3.6. This auxiliary data set was used to expand the set of positive
examples. An corresponding number of negative examples recorded by the same array
was added to the negative examples.

Data Distribution

• In the first experiment we used 551 earthquake samples, 570 noise samples and 39 tremor
samples from the clean data.

• In the second experiment (clean + gold users data), we had the following data distribution:
1031 earthquake samples, 1014 noise samples and 48 tremor samples.
• In the final experiment (which additionally includes the chosen volunteer’s data) had the

following data distribution: 3013 earthquake samples, 2436 noise samples, 203 tremor
samples.
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Figure 4: Amplitude spectra for four 200-s subsets of a 2000-s wave train labeled as tremor and
misclassified as noise. Two subsets (red and magenta) represent noise and two (blue and green)
contain a tremor-like signal.

Appendix B: Model Analysis

To gain further insights into how the WavImg model classifies, we looked at select examples. One
example is where the ML algorithm classified a wave train with tremor as a noise wave train. This
could be the result of

• There being two separate bursts of tremor,
• Both tremor signals being relatively short in duration,
• The tremor signals being weak,
• The tremor signals sounding different from more typical tremor signals
• The presence of non-stationary noise signals.

Extracting two 200-s tremor signals and two 200-s stationary noise signals from the 2000-s wave
train reveals that the the weak tremor signals have some additional power between 3 and 6 Hz,
compared to the noise (Figure 4). This is not entirely characteristic but still consistent for tremor
signals. Although the wave train was likely labeled correctly, the wave train is not a role model for
its class and hence may have confused the ML algorithm. In one other case labeled as tremor and
classified as earthquake, the tremor signal was so brief that is easy to mistake for an earthquake signal.
In another case, strongly peaked signals elsewhere in the wave train might have distracted the ML
from the tremor signal.

The type of waveform data used in our study contains a wild variety of noise signals, for which
we did not designate a single class. However such noise signals can interfere with the ability of
volunteers, and sometimes experts to correctly label wave trains. In at least 5 cases, wave trains with
noise signals, labeled as noise, were misclassified as earthquakes.

Several other cases of misclassification by the ML algorithm can be traced to a mislabeling of the
original data. In three cases of wave trains with noise signals mislabeled as tremor, the ML algorithm
classified the wave trains as earthquakes. The ML algorithm also classified a case of mislabeled
tremor correctly as noise. In at least 4 cases, the ML algorithm correctly classified wave trains as
noise, while they were labeled as earthquakes. In these four cases, listening to and viewing spectral
properties of the wave trains confirmed in hindsight that these signals should have indeed been labeled
as noise.
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