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Abstract

In recent years, unsupervised learning with generative adversarial networks (GANs)
has been tremendously successful in computer vision applications for natural
image generation. Comparatively, unsupervised learning with GANs for emulating
physical systems has received less attention. Some success has been shown with
physically constrained GANs but those are limited by their ability to compute
constraints and to model higher resolution samples. In this work we leverage the
success of StyleGANs for natural images to model complex turbulent climate data
without any statistical or physical constraint. We demonstrate the use of a feature-
matched and annealed LOGAN-based StyleGAN that outperforms state-of-the-art
results on Rayleigh-Benard convection and successfully emulates updraft velocity
fields of high-resolution climate simulations.

1 Introduction

Simulating complex multi-scale turbulent physical systems, such as Earth’s climate, often involves
solving coupled nonlinear partial differential equations (PDEs) across a wide range of scales, with
closures (parameterizations) for the unresolved subgrid scales. Although the advancement of high
performance computing has made simulating Earth’s climate using high-resolution models possible,
such simulations are still very expensive.

To resolve this critical challenge we propose a purely data-driven Deep Learning (DL) based approach
that uses a generative model to emulate the behavior of a state-of-the-art high-resolution climate
model. The proposed approach does not seek to emulate the full spatio-temporal behavior, rather, it
produces realistic spatial snapshots that can be used to obtain climate statistics of interest, including
extreme events (tails of the distribution). This is a first step towards building climate emulators that
faithfully reproduce the dynamics of physics-based models at a significantly lower computational
cost.

Deep generative modeling is a promising approach to learn the dynamics of natural systems. Recent
work has shown that this approach works well in simpler dynamical systems, such as the Lorenz-96
dynamical system (1) and turbulent Rayleigh-Benard convection (2). In this work we employ Style-
GAN (3), a powerful state-of-the-art generative adversarial network (GAN), that has shown success
in generating realistic natural images with customized features to emulate climate data.

Previous studies (2) have incorporated physical and statistical constraints into off-the-shelf deep
generative models, such as DCGAN (4), to help emulate the spatial dynamics and statistics of
Rayleigh-Benard convection (RBC), a simplified model for turbulent atmospheric convection. In
this study, we propose a novel purely data-driven deep generative model of much larger complexity
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and capacity that can accurately emulate the spatial dynamics and statistics of RBC dataset and of a
high-resolution climate model (CAM5.1 25-km) without any physical or statistical constraint.

To summarise we showcase how our modified Style-GAN with annealed LOGAN (5) and feature
matching:

• able to outperform previously used generative models for modeling turbulent Rayleigh-
Benard Convection, as in (2);

• completely self-supervised requires no additional physical or statistical constraint while
training;

• able to produce on order of magnitude larger number of samples than the training dataset;
• free of the mode collapse problem, a plaguing issue in developing reliable and stable GANs;
• capable of accurately modeling the spatial dynamics and statistics of vertical velocity fields;

2 Data

In this work we test our model on two datasets of turbulent, chaotic systems of relevance to weather
and climate modeling:

1. 2D turbulent Rayleigh-Benard convection (RBC) simulated using the Lattice Boltzmann
Method, as in (2). We use the velocity fields of spatial resolution 1792 x 256. Each image
has two channels (velocities along x and y directions). The physics parameters relevant to
this simulation are: Prandtl number = 0.71, Rayleigh number = 2.5E8 and Mach number =
0.1. During training, we divide each 1792 by 256 image into 7 square sub-regions of size
256 x 256 to produce a training set with 35,000 samples.

2. Climate simulations using the Community Atmospheric Model (version CAM5.1: 25-km,
3-hourly resolution). We use vertical velocity fields at 500 hPa (ω500hPa). The training
dataset uses 5 years of data, with 128x128 crops centered at the equator, a total of 10568
samples.

3 Methods

GANs consist of a generator that generates an image from a latent source, and a discriminator that
rates the generated image as “real" or “fake". Training GANs involves an adversarial mini-max
game (6) but is often plagued by the challenging issue of mode collapse (7). We use StyleGAN
(3; 8) modified by improving the efficacy of latent optimization (5). The latent-optimized StyleGAN
exploits knowledge from the discriminator to refine the latent source, instead of using a randomly
sampled source, and is annealed to maintain the balance between low bias and low variance.

In addition we use “feature matching”, introduced in (9), to regularize the generator’s training
objective. More specifically, we train the generator to match the expected value of the features on
intermediate layers of the discriminator. This is an improved choice of statistics for the generator
to match, since the trained discriminator finds features that characterize the real data. A generator
trained as described forces the generation of realistic data with features that are characteristic of the
training dataset. We train our model for over 100k iterations in a non-progressive manner with the
standard non saturating loss (6) and hyperparameters as mentioned in (3).

4 Results

4.1 Results on RBC Dataset

We first present the results of our model on RBC and compare it to recent results on constrained
GANs to emulate this system (2). We calculate the ratio of energy spectra with respect to the original
images and compare these with the results from (2). The energy spectra is computed by applying
Fourier transforms over the mean turbulent kinetic energy (TKE) per unit mass associated with eddies
in the turbulent flow over 750 randomly sampled snapshots of resolution 256 x 256. Values close to

2



1.0 demonstrate the ability of our model to capture the statistics of the dataset (identical with ground
truth).

Figure 1: Comparison of Fourier spectra on TKE for our model vs RBC ground truth (on left) and vs
that of (2) (on right).

4.2 Results on Climate CAM5.1 dataset

For the next set of results we train our model on ω500hPa(updraft velocity) fields from a CAM5.1
dataset (10). We demonstrate that our model is not only able to capture the batch statistics but is also
able to capture the extreme events (tails of the distribution) accurately. Furthermore, through the
birthday paradox principle (11), we show that there are no duplicates, i.e. the model is free from the
problem of mode collapse. Our model can generate in excess of 500,000 samples trained on just over
10,000 original samples.

Figure 2: ω500hPa samples from our model after 94,000 training iterations.
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Figure 3: Histogram and spectra of generated ω500hPa samples compared to the ground truth from
CAM5.1 dataset. The mean and variance of the spectra over the ensemble of 750 samples are
essentially identical for the GAN and the ground truth data, demonstrating the high fidelity of our
results.

5 Discussions and Conclusions

We have presented a LOGAN-based StyleGAN, a novel GAN that combines an annealed optimization
in the latent space with a feature matching loss that helps sample the representation space more
accurately. Results on RBC show that our approach is more effective than current state-of-the-art
GAN-based methods at modeling velocity fields of this system. Results on climate simulation data
show that our approach can generate an order of magnitude larger high-fidelity images with accurate
energy spectra while still avoiding mode collapse.

These results illustrate the feasibility of applying deep generative models to emulate the dynamics of
realistic, high-resolution climate data. The key contributions of our work are as follows:

1. We develop a novel, step-annealed LOGAN (5) based StyleGAN (3) architecture that
outperforms previous statistically constrained GAN models (2).

2. Our model produces order of magnitude larger high-fidelity samples of vertical velocity
(ω500hPa) trained on high-resolution CAM5.1 (25km) and successfully overcomes the
mode-collapse problem.

3. Our model works end-to-end, without any labels or supervision, by simply utilising the
highly expressive and large generative capacity of the networks. Further, it works without
using any physics-based regularizers or losses while training.

4. Finally, we demonstrate that our data-driven deep generative model is capable of both
matching the distribution of original data, even at the tails, and reproducing the energy
spectra (power spectral density across length scales).

Future work includes: (i) training simultaneously on multiple climate variables; (ii) incorporating
covariance and cross relationships between variables that maintain physical consistency; (iii) investi-
gating the role of ’styles’ in the StyleGAN to better understand what characteristics of the model can
be controlled to improve emulating the wide range of scales in complex climate systems.
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