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Abstract

Multi-spectral satellite imagery provides valuable data at global scale for many
environmental and socio-economic applications. Building supervised machine
learning models based on these imagery, however, may require ground reference
labels which are not available at global scale. Here, we propose a generative model
to produce multi-resolution multi-spectral imagery based on Sentinel-2 data. The
resulting synthetic images are indistinguishable from real ones by humans. This
technique paves the road for future work to generate labeled synthetic imagery that
can be used for data augmentation in data scarce regions and applications.

1 Introduction

In many supervised learning problems with satellite imagery, such as agricultural monitoring, training
data are generated from data collected on the ground (a.k.a. ground reference). Ground reference data
collection is an extensive effort, and extremely scarce in remote and dangerous areas that would most
benefit from remote sensing applications. As a result, there are limited number of training datasets
available for these problems which narrows application of machine learning (ML) based techniques
with satellite imagery to specific parts of the world while these images are available at global scale.

Techniques such as transfer learning [1] and data augmentation [2] have been used to mitigate this
issue. Transfer learning has shown some promising results for crop type classification in regions with
homogeneous agricultural practices such as the US [3]. However, this is not necessarily scalable to
other parts of the world, such as regions that are dominated by smallholder farming. Similar study for
a road detection problem shows that a model trained in Las Vegas, US is not easily transferable to
Khartoum, Sudan [4].

Several studies have used GANs with satellite imagery for applications such as super-resolution and
data augmentation [5, 6, 7]. These show the success of applying GAN to high-resolution satellite
imagery with 3-4 multispectral bands.

GANs are generally used to reproduce an RGB image distribution but remote sensing data aug-
mentation applications would require producing images with more than 3 bands along with their
corresponding labels. Generalizing from RGB imagery to labelled multi-band imagery can be
achieved in two steps by first producing more than 3 bands and then incorporating label generation.
Here, we tackle the first step and present a new framework for generating synthetic satellite imagery.
We introduce a new GAN architecture that incorporates ten bands with varying resolutions from
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Figure 1: Block Diagram of the MSG-ProGAN model

Sentinel-2 satellite imagery, and generates realistic multispectral imagery for data augmentation.
Multispectral bands are essential for many land surface monitoring applications, therefore this model
can be applied to augment data across multiple applications.

2 Dataset

We use multispectral imagery from Sentinel-2 satellites (details of the individual bands are listed in
the Table A.1). Our study region is western Kenya, where we have ground reference data for the next
phase of this project. Therefore, for the experiments of this study we selected 105k Sentinel-2 images
from this region at 256× 256 pixels to be used as training images. The selected images consist of
several types of land cover including barren land, urban areas, forests, croplands, and water. We filter
out samples that contain cloud and samples where water bodies cover a significant portion of the
image. Figure 2 shows sample real RGB images used in this study, and Figure A.1 shows all ten
bands from sample images.

3 Methodology

GANs suffer from a variety of issues such as training instability and mode collapse that require careful
setting of hyperparameters for successful training. [8] suggests WGAN-GP training loss which
can mitigate the issues caused by insufficient overlap between generated and target distributions
leading to an increased stability of training. Karnewar et al. [9] builds on the previous work [10]
and proposes the Multi-Scale Gradients (MSG) method where images are produced in exponentially
growing resolutions starting from the smallest size of 4 × 4 till the final output size allowing the
discriminator to provide feedback in all resolutions instead of just one which further mitigates these
issues.

3.1 Model

We adopt the MSG-GAN architecture and WGAN-GP loss. Specifically, we use the MSG-ProGAN
architecture used in [9] (and variants of it) and modify it to produce multispectral satellite images of
size 256× 256 instead of RGB images (which differs in the number of output channels). The exact
architectures are shown in Tables A.2 and A.3.

4 Experiments

Satellite imagery has coarser pixel size (a.k.a. resolution) compared to common imagery in computer
vision, and they usually have more than 3 bands, possibly with varying resolutions. Due to these
differences, a straightforward port of GAN models from existing literature might not achieve the
desired results. Therefore, we broke down our approach to smaller experiments and incrementally
increased complexity of the model towards the final goal of producing multispectral satellite images.

We start with experiment 1 where we generate 4× 4 resized versions of the RGB bands of the target
images using the smaller parts of the Generator an Discriminator in the original MSG-ProGAN
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Table 1: List of experiments

No Experiment Result

1 4× 4 RGB Synthetic and real images are indistinguishable.
2 256× 256 RGB Synthetic images can fool humans.

3A 256× 256 ten bands 1 Less than satisfactory results.
3B 256× 256 ten bands 2 Less than satisfactory results.
3C 256× 256 ten bands 3 Best results for the ten bands case.
4A 256× 256 RGB fewer convolutions Satisfactory Results.
4B 256× 256 RGB fewer filters Image quality almost as good as Experiment 2.
5 256× 256 ten bands fewer filters Image quality almost as good as Experiment 3C.

network. Results are satisfactory (not shown) and the distribution of the 4× 4 images produced by
the generator is visually indistinguishable from the 4× 4 versions of the original images. Using this
as a toy experiment, we chose RMSProp as the optimizer, 10−3 as the learning rate and a weight
factor (λ) of 10 for the gradient penalty for the rest of experiments. More details on the training is
provided in sectionB.

Table 1 shows the list of all experiments conducted. We start with 256 × 256 RGB imagery and
then generate 256 × 256 ten band imagery. Finally, we experiment with smaller versions of the
MSG-ProGAN model to optimize the model resource footprint (E.g. GPU memory requirement).

4.1 Experiment 2: Generating 256×256 RGB images

Here, we use the full MSG-ProGAN architecture for 256 × 256 images described in Tables A.2
and A.3 by setting m = 3 to produce a 3 channel RGB output. We train the model for 12 epochs on the
RGB channels with a batch size of 4. The resulting synthetic images are extremely convincing. In an
online experiment with 106 unique individuals attempting to distinguish real images from synthetic
ones, a majority of the them (>70) scored an average in the range of 50%-70%. Despite the GAN
having learned well, there are some classes that are missing in the outputs such as urban areas and
regular croplands. This could be due to the class imbalance in our dataset (regular croplands and
urban areas are underrepresented). Figure 2 shows example synthetic images from this experiment.

4.2 Experiment 3: Generating 256×256 ten band images

Here, we expand the model to ten bands consisting of four bands of 10m resolution and six bands of
20m resolution. The 10m bands form a 256× 256 image and the 20m bands form a 128× 128 image
due to the difference in resolutions. In experiment 3A, we simply modify the model from experiment
2 and use nearest neighbor to interpolate the 128× 128 images into 256× 256 images and treat all
the ten bands the same. Next, we set m = 10 in the architecture of MSG-ProGAN to produce ten
bands per image instead of three. The results are less than satisfactory. Some examples shown in
Figure A.2.

For experiment 3B, we grouped together bands based on their resolutions (forming 2 groups, one for
10m bands, one for 20m bands). In the generator, we produce 256× 256 output for the 10m bands as
usual and 128× 128 output for the 20m bands by using an extra pooling layer after the convolution
layer that produces the image for this group. In the discriminator, we process these groups in parallel
branches and merge the output features together forming a neural network described in Figure A.3.
The images produced by this architecture are of poor quality and suffer from various issues such
as presence of artefacts and loss of correlation between the bands of different resolutions in the
generated images. Some results (only the RGB bands) are shown in Figure A.2.

To improve the results and ensure bands with varying resolution are correlated, we revised the
model from 3A to generate only the 10m bands in the highest resolution (256× 256). The proposed
discriminator model for this is presented in Figure A.4. This architecture produces the best quality
images out of the three experiments (3A, 3B, and 3C) designed to generate ten band images. The
images from different bands are well synced and the images are almost realistic although there is
some observable loss of variety in the images. Figure 2 shows samples generated from this model.
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Figure 2: Sample real and synthetic images from experiments 2, 3C, 4B, and 5 (only RGB bands
shown)

4.3 Experiments 4A, 4B, and 5: Resource efficient models

To reduce the resource footprint of our model, we designed two experiments for RGB images. First,
we investigate the effect of reducing the number of convolutions in the model by removing every
other convolution and also reducing the number of images produced by the generator and passed to
the discriminator (only 4× 4, 16× 16, 64× 64, 256× 256 ones as shown in Figure A.5). Next, we
investigate the effect of reducing the number of filters in every layer of the model by half.

We find that both of these approaches are viable strategies to reduce the model’s resource footprint i.e
they both produce satisfactory results but reducing the number of filters is the preferred approach and
the performance in this case is very close to the original model. We also observe by modifying the
model from Experiment 3C in the same way that this result generalizes to the ten bands case.

5 Discussion

Satellite imagery have unique properties that distinguishes them from common images used in the
computer vision field. As a result, existing GAN architectures cannot be applied to these imagery off
the shelf. With the goal of generating synthetic satellite imagery for data augmentation, we designed
multiple GAN architectures of varying complexity to generate synthetic multispectral multi-resolution
satellite imagery. Results show:

1. A straightforward port of models from existing GAN literature is sufficient to generate RGB
bands of satellite images but these models have high resource requirements.

2. Our modified GAN architecture can generate realistic images with ten bands at varying
resolutions.

3. Significant GAN model size reduction can be achieved by using fewer number of filters with
minimal reduction in quality.

This study demonstrates a state-of-the-art GAN architecture that can be used to generate diverse
multispectral satellite imagery with varying band resolutions. Such a model is an essential step to the
next phase of our experiment which is generating these images with their corresponding labels.
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A Supplementary Figures and Tables

Table A.1: Description of the bands in Sentinel-2 satellite images. 10m and 20m bands are used in
this study.

Band Spatial Resolution

Band 1 – Coastal aerosol 60
Band 2 – Blue 10

Band 3 – Green 10
Band 4 – Red 10

Band 5 – Vegetation red edge 1 20
Band 6 – Vegetation red edge 2 20
Band 7 – Vegetation red edge 3 20

Band 8 – NIR 10
Band 8A – Narrow NIR 20
Band 9 – Water vapour 60

Band 10 – SWIR - Cirrus 60
Band 11 – SWIR1 20
Band 12 – SWIR2 20

Table A.2: Generator Architecture. After every block in the generator, a 1× 1 Conv layer is used to
convert the output activation volume into an image which is passed onto the discriminator.

Block Operation Activation Output Shape

Latent Vector Norm 512 x 1 x 1
1. Conv 4x4 LReLU 512 x 4 x 4

Conv 3x3 LReLU 512 x 4 x 4
Upsample - 512 x 8 x 8

2. Conv 3x3 LReLU 512 x 8 x 8
Conv 3x3 LReLU 512 x 8 x 8
Upsample - 512 x 16 x 16

3. Conv 3x3 LReLU 512 x 16 x 16
Conv 3x3 LReLU 512 x 16 x 16
Upsample - 512 x 32 x 32

4. Conv 3x3 LReLU 512 x 32 x 32
Conv 3x3 LReLU 512 x 32 x 32
Upsample - 512 x 64 x 64

5. Conv 3x3 LReLU 256 x 64 x 64
Conv 3x3 LReLU 256 x 64 x 64
Upsample - 256 x 128 x 128

6. Conv 3x3 LReLU 128 x 128 x 128
Conv 3x3 LReLU 128 x 128 x 128
Upsample - 128 x 256 x 256

7. Conv 3x3 LReLU 64 x 256 x 256
Conv 3x3 LReLU 64 x 256 x 256

B Model and Training Details

B.1 Weight initialization: Equalized Learning Rate

We follow the weight initialization technique mentioned in [10] to use a trivial N (0, 1) initialization
and then explicitly scale the weights at run-time [11]. We set w′i = wi/c, where wi are the weights
and c is the per-layer normalization constant from He’s initializer. This ensures that the dynamic
range, and thus the learning speed, is the same for all weights.
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Table A.3: Discriminator Architecture. m is the number of output channels which varies across
different experiments.

Block Operation Activation Output Shape

Image 1 - m x 256 x 256
From RGB - 64 x 256 x 256

1. MiniBatchStd - 65 x 256 x 256
Conv 3x3 LReLU 64 x 256 x 256
Conv 3x3 LReLU 128 x 256 x 256
Max Pool - 128 x 128 x 128
Image 2 - m x 128 x 128
Concat - (128+m) x 128 x 128

2. MiniBatchStd - (128+m+1) x 128 x 128
Conv 3x3 LReLU 128 x 128 x 128
Conv 3x3 LReLU 256 x 128 x 128
Max Pool - 256 x 64 x 64
Image 3 - m x 64 x 64
Concat - (256+m) x 64 x 64

3. MiniBatchStd - (256+m+1) x 64 x 64
Conv 3x3 LReLU 256 x 64 x 64
Conv 3x3 LReLU 512 x 64 x 64
Max Pool - 512 x 32 x 32
Image 4 - m x 32 x 32
Concat - (512+m) x 32 x 32

4. MiniBatchStd - (512+m+1) x 32 x 32
Conv 3x3 LReLU 512 x 32 x 32
Conv 3x3 LReLU 512 x 32 x 32
Max Pool - 512 x 16 x 16
Image 4 - m x 16 x 16
Concat - (512+m) x 16 x 16

5. MiniBatchStd - (512+m+1) x 16 x 16
Conv 3x3 LReLU 512 x 16 x 16
Conv 3x3 LReLU 512 x 16 x 16
Max Pool - 512 x 8 x 8
Image 5 - m x 8 x 8
Concat - (512+m) x 8 x 8

6. MiniBatchStd - (512+m+1) x 8 x 8
Conv 3x3 LReLU 512 x 8 x 8
Conv 3x3 LReLU 512 x 8 x 8
Max Pool - 512 x 4 x 4
Image 6 - m x 4 x 4
Concat - (512+m) x 4 x 4

7. MiniBatchStd - (512+m+1) x 4 x 4
Conv 3x3 LReLU 512 x 4 x 4
Conv 3x3 LReLU 512 x 4 x 4

Fully Connected Linear 1 x 1 x 1
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Figure A.1: Samples of real ten band images in our dataset: Each row shows one sample and each
column is a band from left to right: blue, green, red, NIR , red-edge, red-edge-2, ’red-edge-3’,
’red-edge-4’, ’SWIR1’, ’SWIR2’. The first 4 bands are 10m bands (256× 256) and the remaining six
are 20m bands (128× 128). The 20m bands have been resized to 256× 256 for ease of visualization.

Figure A.2: Sample synthetic images from experiments 3A, 3B and 4A (only RGB bands shown)
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Figure A.3: Discriminator model architecture for experiment 3B

Figure A.4: Discriminator model architecture for experiment 3C

B.2 Pixel-wise Feature Vector Normalization in Generator

We also apply the layer-wise vector normalization in [10] after every 3x3 convolution in the generator
to disallow the scenario where the magnitudes in the generator and discriminator spiral out of control
as a result of unhealthy competition between the discriminator and generator.

B.3 Minibatch standard deviation

Introduced first in the [12] minibatch discrimination can help GANs prevent mode collapse. We
follow [9] in their use of minibatch standard deviation as a simpler variant of the above technique
to achieve the same goal. We first compute the standard deviation for each feature in each spatial
location over the minibatch. We then average these estimates over all features and spatial locations to
arrive at a single value. We replicate the value and concatenate it to all spatial locations and over the

Figure A.5: Block Diagram of the modified MSG-ProGAN model with fewer convolutions.
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Figure A.6: Results of experiment 3C: Each row shows one sample and each column is a band
from left to right: blue, green, red, NIR , red-edge, red-edge-2, ’red-edge-3’, ’red-edge-4’, ’SWIR1’,
’SWIR2’. The first 4 bands are 10m bands (256 × 256) and the remaining six are 20m bands
(128× 128). The 20m bands have been resized to 256× 256 for ease of visualization.

minibatch, yielding one additional (constant) feature map. This additional layer is added after every
concatenation step.

B.4 Training Details

We use Pytorch’s RMSProp optimizer with a learning rate of 10−3 for both the generator and the
discriminator. The total loss for the generator and discriminator are as follows where D(x) represents
the discriminator output for input image x :

Gloss = −D(generatedimage)

Dloss = D(generatedimage)−D(realimages) + λ×GP
(1)

where GP denotes the Gradient Penalty corresponding to the WGAN-GP loss. We set the relative
importance parameter λ to 10.
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