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Abstract

Modeling fire spread is critical in fire risk management. Creating data-driven
models to forecast spread remains challenging due to the lack of comprehensive
data sources that relate fires with relevant covariates. We present the first compre-
hensive dataset that relates historical fire data with relevant covariates extracted
from satellite imagery. This open-source dataset contains over 2 million data points.
We discuss an algorithmic approach based on large-scale raster and vector analysis
that can be used to create similar datasets.

1 Introduction

Wildfires cause loss of life, economic damage, and pose indirect environmental and health threats [Do-
err and Santín, 2016]. The November 2018 Camp Fire in Northern California resulted in losses
worth $24 billion, including property destruction and firefighting costs [Bartz, 2019]. Occurrences of
such extreme fire events are likely to increase [Joseph et al., 2019]. In the current wildfire season in
California so far, more than four million acres have already burned from more than 8,000 wildfires.
At one point in August 2020, the entire northern half of the state were instructed to prepare for
evacuation.

Modeling the dynamics of fire spread is crucial to first responders. Responders need to allocate limited
resources across large areas to combat fires and minimize the loss of life and property. Traditionally,
fire spread is modeled by tools that use physics-based modeling [Rothermel, 1972, Andrews, 1986,
Finney, 1998]. While such models are widely used, prediction of fire spread is improved by a large
set of covariates. It is difficult to model the exact effect of each covariate on fire in closed-form.
Data-driven modeling can be used to estimate the effects of a diverse set of features on wildfire
susceptibility (such as geographic and climate data) [Joseph et al., 2019, Ghorbanzadeh et al., 2019]
and improve response to emergency incidents in general [Mukhopadhyay et al., 2020]. However,
to the best of our knowledge, there is no complete and open-source data source that combines fire
occurrences with geo-spatial features, fuel levels, and weather to allow the research community to
develop approaches to manage wildfires.

Through this paper, we make available a spatio-temporal dataset, WildfireDB, that can be used to
model how wildfires spread as a function of relevant covariates. We discretize space and time and
integrate fire occurrence with corresponding vegetation, fuel, and topographic information. We use
“cell” and “time-step” to denote the smallest units of spatial and temporal discretization, respectively.
Each data point in our data source consists of information about a specific spatial cell (called reference
cell) on fire at a given time-step. Each data point also consists of information about neighbors of
the reference cell at the subsequent time-step and whether fire spreads from the reference cell to the
neighboring cell or not. We define neighbors as spatial units bordering each other. Our data source
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can then be used to predict how fire will spread from an area to adjacent areas as a function of relevant
covariates.

Generating a comprehensive dataset on fire spread dataset is complicated for the following two
reasons. First, data regarding fire occurrence and covariates are often available in different data
models. For example, the locations and sizes of historical fire occurrences are usually available in
a vector model, while information about vegetation, fuel, and topographic features is available in a
raster model. These two data models use different storage mechanisms and computational methods
that make it difficult to combine them. Second, fires spread through extremely large areas through
which covariates can vary significantly. As an example, the raster data used in our data source has
over a billion spatial units for the state of California alone. Mining large-scale feature data is a
massive computational bottleneck. The large size of the data sources further complicates the fusion
of raster and vector data.

Traditional approaches to geospatial data fusion are designed to work with either raster or vector
data. Therefore, in order to combine data sources in different data models, they need to be converted
to a uniform representation. This conversion is computationally expensive and increases the size
of data quadratically with the spatial resolution since the data is two-dimensional. The raster-based
approach [Baumann et al., 1998, Brown et al., 2013] rasterizes each polygon in the vector layer to a
raster (mask) layer with the same resolution as the input raster layer. It then combines the two raster
layers to compute the desired aggregate function. Systems that use this approach generally keep the
mask layer in memory, making it difficult to use them when the mask layer becomes too large. This
approach has a computational complexity of O(np · c · r), where np is the number of polygons in the
vector data, and c and r are the numbers of columns and rows in the raster data respectively. On the
other hand, the vector-based approach [Zhang et al., 2015] converts each pixel in the raster to a point
and then tests the point against each polygon in the vector data to find a match. This approach has a
computational complexity of O(np log np · c · r).
The limitations of these systems in processing the combination of raster and vector data becomes
more prominent when we need to process large amounts of data [Singla and Eldawy, 2018]. Hence,
we use a fully decentralized approach to data fusion to combine raster and vector data [Singla and
Eldawy, 2020]. This approach does not require data to be converted from one form to another (vector
or raster). Instead, it computes an intermediate data structure, called an intersection file between the
raster and vector data. The intersection file serves as a mapping between the raster and vector dataset
and can also be leveraged to allow parallel computation. This scalable and efficient approach, with
a computational complexity of O(np log np + c · r), allows us to combine large raster and vector
datasets and further process it to generate the WildfireDB dataset.

2 Data

WildfireDB contains the locations and sizes of historical fire occurrences in California, through the
years 2012 to 2018. Each entry in the dataset consists of a specific cell that is observed to be on
fire at a particular time-step along with spatially-associated vegetation descriptors, fuel levels, and
topography information. Each entry also consists of fire occurrence and the same set of features in a
neighboring cell at the subsequent time-step.

The fire occurrence data were collected in vector form from the Visible Infrared Imaging Radiometer
Suite (VIIRS) thermal anomalies/active fire database [Schroeder et al., 2014]. The dataset contains
latitude and longitude values that correspond to the center of pixels representing 375 × 375 meter
square cells. An incidence of fire is indicated by the fire radiative power (FRP) levels. The temporal
granularity of the data is one day.

The vegetation, fuel, and topography data were collected in raster form from the “LANDFIRE”
project [Ryan and Opperman, 2013], which is based on satellite imagery. The raster files have a
spatial resolution of 30 × 30 meter square cells and each file consists of over 1 billion pixels. This
includes data categories such as canopy base density, canopy cover, and vegetation type. We list all
the data categories used and the years from which the data was collected in Table 1.

To reconcile the different spatial resolutions, we divide the spatial area under consideration (the state
of California) into a grid of 375 × 375 meter cells, resulting in over 3 million polygons. The center
of each fire pixel from the vector data can therefore overlap with exactly one cell in the grid. To
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Table 1: LANDFIRE raster data categories

Name Year(s)

Canopy Base Density 2012, 2014, 2016
Canopy Base Height 2012, 2014, 2016
Canopy Cover 2012, 2014, 2016
Canopy Height 2012, 2014, 2016
Existing Vegetation Cover 2012, 2014, 2016
Existing Vegetation Height 2012, 2014, 2016
Existing Vegetation Type 2012, 2014, 2016
Elevation 2016
Slope 2016

compute the corresponding vegetation, fuel, and topographic information associated with each data
point, we compute zonal statistics for the vector data using the raster data. The method of zonal
statistics calculation refers to that of summary statistics using a raster dataset within zones defined by
another dataset (typically in vector form).
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Figure 1: Data Generation Process

2.1 Data Generation

The data generation process as depicted in Figure 1 includes the following steps: 1. Compute zonal
statistics for each spatial cell (in the form of a polygon in the vector data) using the LANDFIRE
rasters. 2. Find the geographical neighbors for each cell. 3. For each fire point in VIIRS data, find
its corresponding cell. 4. For each fire observed in VIIRS data (denoted by xi), generate tuples
{xi, ti, fi, xj , ti+1, fj}, where xi and xj are neighbors, xi is burning at time-step ti and xj may or
may not be burning at time-step ti+1. fi and fj are the respective feature vectors (zonal statistics and
FRP) for the fire points. We describe each step below.

1. Compute Zonal Statistics: For each spatial cell in the 375m × 375m grid placed over California
and for each raster dataset mentioned in Table 1, we want to compute aggregated feature vectors.
To compute zonal statistics, we employ the fully distributed system proposed in Singla and Eldawy
[2020] on an Amazon AWS EMR cluster with one head node and 19 worker nodes of type m4.2xlarge
with 2.4 GHz Intel Xeon E5 – 2676 v3 processor, 32 GB of RAM, up to 100 GB of SSD, and 2×8-
core processors. This system can work with data in their native formats by computing an intermediate
data structure called intersection file that maps raster to vector data. The creation of intersection
file also facilitates the use of distributed computing to compute zonal statistics. The system takes
approximately two hours to compute zonal statistics for all the rasters mentioned in Table 1. It outputs
a collection of tuples (Cell ID,Geometry, f) where Cell ID is a unique identifier for each cell in
the spatial grid placed, Geometry refers to the actual spatial geometry of the cell, and f denotes the
set of statistics calculated for each cell using all the LANDFIRE rasters.
2. Find neighbors: The neighbors for each cell in the spatial grid are computed by doing a spatial
self join using the predicate touches on the Geometry values of the tuples generated in the previous
step. The predicate touches returns true, if only the boundaries of the cells intersect. This spatial
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Table 2: WildfireDB dataset example. Each column is a data entry.

Cell ID 7234 7380 . . .
Date 2012-01-16 2012-01-06 . . .
FRP 3.2 5.1 . . .
Cell IDn 7233 7233 . . .
FRPn 0.0 0.0 . . .
Canopy Base Density max. 13.0 100.0 . . .
Canopy Base Density min. 0.0 0.0 . . .
Canopy Base Density median 9.0 8.0 . . .
. . . . . . . . . . . .
Slopen sum 3109.0 3109.0 . . .
Slopen mode 24.0 24.0 . . .
Slopen count 169.0 169.0 . . .
Slopen mean 18.396450 18.396450 . . .

join is implemented using SpatialHadoop [Eldawy and Mokbel, 2015]. It outputs a collection of
tuples (Cell ID,Geometry, f, Cell IDn, Geometryn, fn) where each tuple in the previous step is
appended by the tuples of one of its neighbors (we use subscript n to denote variables that refer to
the neighbors of the cell in consideration).
3. Find cell for each fire point: For specific points (latitude-longitude pairs) in VIIRS data and the
cells in our spatial grid, a spatial join using the predicate contains is performed to find the cell that
each fire point is contained in. The predicate contains returns true, if and only if the fire point lies in
the interior of the cell. This step is implemented using SpatialHadoop [Eldawy and Mokbel, 2015].
4. Generate tuples: To generate the final tuples for WildfireDB, we start by filtering the tuples in
the VIIRS data for the years 2012 to 2018. The VIIRS dataset may contain multiple tuples for the
same fire point having the same time-step yet different FRP values. We group all such tuples by the
fire point and time-step and average the FRPs to generate a single tuple with this average FRP. The
resulting VIIRS tuples are then joined with tuples from Step 2 based on the Cell ID. This results
in tuples of the form (Cell ID,Geometry, f, t, FRP,Cell IDn, Geometryn, fn), where t is the
time-step of the fire incidence from VIIRS data and FRP is the average FRP calculated previously.
The next step is to perform a left join on these tuples with the VIIRS data based on the neighbor’s
cell identifier Cell IDn and on the condition that the neighbor’s time-step tn = t+1. This results in
tuples of the form (Cell ID,Geometry, f, t, FRP,Cell IDn, Geometryn, fn, tn, FRPn). If the
condition on the neighbor’s time-step is not satisfied, the value of FRPn is set to zero, i.e. no fire.

2.2 WildfireDB Description

Our dataset has a total of 2,367,209 data points. Each data entry of WildfireDB corresponds to
a specific 375-meter × 375-meter polygon at a given point in time, and the status of one of its
neighboring cells at the subsequent time-step. Relevant covariates of both cells are also available. The
vegetation, fuel, and topography information consists of summary statistics (maximum, minimum,
median, sum, mode, count, and mean of each of the data categories). The data is available at URL:
https://wildfire-modeling.github.io/. A data example is shown in Table 2.

3 Discussion

Wildfires affect large areas and are expected to grow in frequency and severity [Joseph et al., 2019].
To better analyze and study fires, we created WildfireDB, the first comprehensive dataset on wildfires
that combines historical fire data with relevant covariates fused from heterogeneous data sources. Our
dataset, with over a million data points for California, is open-source for the research community
to use. Forecasting the spread of wildfires is crucial to develop models of resource allocation and
suppression. Although our dataset is the first of its kind, there are some limitations that we highlight.
A crucial determinant of how wildfires spread is wind. Our data does not include information about
wind. We are currently incorporating hourly wind data from National Centers for Environmental
Information (NCEI).1 We are also augmenting the data set by adding data points of all fire occurrences
in the contiguous United States.

1https://ncei.noaa.gov/
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Broader Impact

Wildfires have caused massive damage to lives and property in the last decade. In the four years
between 2014 and 2018, the U.S. wildfire acreage increased from 3.6 million to 8.8 million
acres [Stacker, 2020]. In order to mitigate and suppress wildfires, it is important to understand
how fires originate and spread. We created the first open-source comprehensive data source that links
fire occurrence with relevant covariates extracted from satellite imagery. We hope that our dataset will
help researchers better model wildfires for first responders to manage and fight them more effectively.
Our dataset can be used to build generative models for fire spread, which in turn can be used to create
principled response strategies against wildfires [Diao et al., 2020].
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A Appendix

This appendix presents an analysis of the computational complexity of raster-based approach, vector-
based approach and the EMI approach [Singla and Eldawy, 2018] used in this paper.

A.1 Raster Approach (RA)

The raster-based approach requires to create a separate raster layer for each polygon in the vector
dataset. It then scans each pixel in this rasterized (mask) layer and the corresponding pixels in the
input raster layer in order to compute the desired aggregate function. It takes at most TRA time
computed as

TRA = np · c · r (1)

c · r represents the time taken to scan each pixel in the raster layer and np is the number of polygons
in the vector layer.

A.2 Vector Approach (VA)

The vector-based approach converts each pixel in the raster to a point and then test the point against
each polygon in the vector data to find a match. This approach can be optimized by creating an index
for the vector dataset. However, it would still require scanning the whole raster dataset and converting
each pixel to a point. It takes at most TV A time computed as

TV A = np log np · c · r (2)

np log np represents the time taken for the index lookup for each pixel in the raster layer with c
columns and r rows.

A.3 EMI Approach

The EMI approach computes an intermediate data structure called intersection file using the vector
layer and the metadata from raster layer. The intersection file serves as a mapping between the raster
and vector layer, and can be used to compute the desired aggregate function in one scan over the
raster layer.
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It takes at most TEMI time computed as

TEMI = np log np + c · r (3)

np log np represents the time taken to compute the intersection file while c · r is the time taken to
complete one scan of the raster layer with c columns and r rows.

B Experiments

We present baseline results using the WildfireDB dataset for the modeling how wildfires spread. Our
goal is to evaluate the accuracy of standard approaches and understand how the dataset can actually
be used in practice. We used data from 2012 to 2017 as our training set and data from 2018 as our
test set. We set the time step for our experiments to a day, based on the minimum time fidelity of
the VIIRS dataset. All experiments were run on an Intel Xeon 2.2 GHz processor with 125 GB of
memory. In our experiments, our target variable is the predicted fire intensity at a cell, conditional on
a neighboring cell known to be on fire. Specifically, we try to model how wildfires spread. We label
a forecast as a true positive prediction when both the predicted fire intensity and the recorded fire
intensity are greater than the pre-specified threshold ε.

We present results using the random forest regression model. We observe that the model is insensitive
to the number of trees used (5, 50, 100, and 500). We also observe similar accuracy across training
and test sets. We tested several realizations of ε to examine the robustness of our forecasting approach
on different observed intensities of fire. Our results show that while prediction accuracy for extremely
small fires (ε = 0.5) is low, our forecasting model achieves high accuracy (> 90%) in predicting
spreads from relatively larger fires. We summarize the results in Table 3.

FRP Threshold (ε) Accuracy on Test Set

0.5 77%
1 81%
5 92%

Table 3: Accuracy with 5-tree Random Forest Regression
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