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Abstract

Where are the Earth’s streams flowing right now? Inland surface waters expand
with floods and contract with droughts, so there is no one map of our streams.
Current satellite approaches are limited to monthly observations that map only
the widest streams. These are fed by smaller tributaries that make up much of
the dendritic surface network but whose flow is unobserved. A complete map of
our daily waters can give us an early warning for where droughts are born: the
receding tips of the flowing network. Mapping them over years can give us a map
of impermanence of our waters, showing where to expect water, and where not to.
To that end, we feed the latest high-res sensor data to multiple deep learning models
in order to map these flowing networks every day, stacking the times series maps
over many years. Specifically, i) we enhance water segmentation to 50 cm/pixel
resolution, a 60x improvement over previous state-of-the-art results. Our U-Net
trained on 30-40cm WorldView3 images can detect streams as narrow as 1-3m
(30-60x over SOTA). Our multi-sensor, multi-res variant, WasserNetz, fuses a
multi-day window of 3m PlanetScope imagery with 1m LiDAR data, to detect
streams 5-7m wide. Both U-Nets produce a water probability map at the pixel-level.
ii) We integrate this water map over a DEM-derived synthetic valley network map
to produce a snapshot of flow at the stream level. iii) We apply this pipeline,
which we call Pix2Streams, to a 2-year daily PlanetScope time-series of three
watersheds in the US to produce the first high-fidelity dynamic map of stream flow
frequency. The end result is a new map that, if applied at the national scale, could
fundamentally improve how we manage our water resources around the world.
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Figure 1: Narrow (5-2m) river in the South Dakota Aol. Left to right: WorldView 3 (WV3) (50cm/px),
PlanetScope (3m/px), Sentinel-2 (30m/px), Digital Elevation Model (DEM) (1m/px), water probability map
(50cm/px) of the same area. WV 3, All satellite images are acquired on the same day, and are shown with a false
RGB composite of Near-Infrared (NIR), Red, and Green bands.

1 Introduction

The United Nations 2020 Sustainable Development Goals report [ 1] states that "water scarcity affects
more than 40% of the global population and is projected to increase. Over 1.7 billion people are
currently living in river basins where water use exceeds recharge”. Small and medium sized streams
make up a significant portion of the flowing network. The receding tips of this network could serve as
an early warning for where droughts are born [2, 3, 4]. In the United States, the National Hydrography
Dataset (NHD) [5] contains large rivers, some smaller streams, as well as lakes that have been mapped
during aerial and on-ground mapping campaigns since the early 20th century. A subset of these
streams are monitored by gages that continually record the water levels at discrete locations. However,
small and intermittent streams (widths < 90 m) are inadequately mapped and not monitored, even
though they contribute 48% of the total surface water extent of the stream network globally [6].

Open data from satellite missions, like Sentinel and Landsat, have been used for water mapping
applications [7, 8, 9, 10]. Sentinel and Landsat offer temporally sparse images, in 5 and 16 day
intervals, respectively, and at resolutions (10-30m/px) that are too low for detecting small and
intermittent streams. At the opposite extreme, very-high resolution (VHR) imagery, like from
Maxar’s WorldView satellites, can be processed into very high resolution (<5m) maps over smaller
areas. Such satellites are generally task-based, that is, they acquire images on customer demand, so
multi-temporal coverage is not guaranteed. As a trade-off, the PlanetScope constellation has high-res
(3m), daily, wall-to-wall coverage, offering a VHR-grade imagery that is temporally dynamic and
spatially extensive.

From pixels to streams 3 We show that, by combining VHR with high cadence, we can monitor
previously unseen streams at near real-time (daily). Our Pix2streams pipeline consists of two
functional primitives:

1. Pixel-level mapping: A U-Net (SOTA semantic segmentation model [1 1]) creates pixel-level
water probability maps. Our variant, WasserNetz, fuses multiple sensors at different resolutions and
outputs a water probability map at the resolution of the ground-truth annotation layer (0.5m/px).

2. Stream-level mapping: We aggregate these probabilities over a synthetic valley network, derived
from 1m LiDAR-based digital elevation maps (DEM), to obtain a stream-level hydrology map.

We apply this pipeline to a 2-year daily time-series of 3m PlanetScope images, in three US watersheds,
to obtain a stream-level dynamic hydrology map, that is, a collection of [N time-series (for [NV
streams) of the stream’s surface % covered by water, daily. Through this map, we can now monitor
stream flow frequency, and therefore quantify water availability on a daily, monthly, or yearly basis.

Contributions

A We develop WasserNetz, a water segmentation model for PlanetScope imagery trained on a
custom dataset of manually labeled polygons, derived from same-day very high-resolution WV3
images (0.5m/px). We show that water detection accuracy is improved by fusing the PlanetScope
imagery with USGS high-resolution Light Detection and Ranging (LiDAR) derived products.

3Video on the steps from the pixel-level map, to the stream-level map: bit ly/pix2streams


http://bit.ly/pix2streams

B We analyze and compare the performance of WasserNetz with models trained on higher res-
olution (30-40cm/px) WV3 images on a manually annotated test dataset. Also, we study the
sensitivity of the models w.r.t. the stream width.

C We produce a fundamentally new hydrology map at the stream level, by fusing the pixel-level
output of WasserNetz with the synthetic valley network, derived from the LIDAR-based DEM.

2 Related Work

Most of the work on mapping and monitoring of rivers uses medium-resolution (30m/px) imagery
from Landsat or Sentinel-2 [7, 9, 10], and only recently has VHR (sub-meter) imagery been used,
albeit with a broad focus on all water bodies [12, 13]. Landsat imagery was used to derive continental
and global maps of large river systems, and to estimate river width and surface area at the global
scale [0, 14]. Through Google’s Earth Engine, Landsat was also used to conduct a multi-annual
global inventory of inland waters [&], enabling monthly estimations of water permanence. Limited by
Landsat’s 30 m/px resolution, both studies can reliably detect only streams wider than 60 — 90m (2-3
pixels). Until today, this spatial limitation has been endemic in the detection of narrower streams [15].

Some aspects of our work are not directly comparable to these studies: on the data side, due to the
unique spatial and temporal resolution of our imagery and LiDAR derivatives. On the application
side, our pipeline for daily VHR river mapping is the first of its kind. On the algorithmic side, the
U-Net [ 1 1], with its concurrent encoder-decoder bottlenecks of different resolution inputs, learns
multi-scale features to ultimately inform a fine-grained segmentation. This simple and intuitive idea
is accepted as a staple of semantic segmentation in remote sensing [16, 17, 18, 13, 19].

Instead of comparing architectures, our ablations in Section 5 focus on the resolving capacity of
similar U-Nets w.r.t. two fronts: i) training on 30-40cm WV3 vs. 3m PlanetScope + 1m LiDAR
derivatives (WasserNetz); ii) stream width.

3 Data

We study three Areas of Interest (Aols) across the western United States. With limited resources for
expert labeling, these Aols are chosen to provide a representative sample of the morphology, geology
and vegetation of terrains. Fig 1 shows an example of the three types of data used per Aol:

WV3: a single mosaic acquired over multiple dates, with 30-50cm ground sample distance (GSD), 8
spectral bands (coastal blue to near-infrared (NIR)), atmospherically corrected and pansharpened.

PlanetScope: 2 years (April 2018 - April 2020) of daily snapshots, with 3m GSD, four bands (rgb
+ NIR). We used an experimental version, corrected for the presence of clouds, radiometrically
harmonized to Landsat, Sentinel-2 and MODIS information [20].

LiDAR derivatives: With the TauDEM suite [21] we produce hydrology products from the bare-
earth 1m resolution 3D Elevation Program (3DEP) DEM, like the synthetic valley network, reach
catchments, Strahler stream order, and a stream buffer (the distance from a given pixel to the nearest
reach). See A.1 for details on the derivatives used for training.

Manually labeled polygons. To train the model in a supervised manner, a set of georeferenced
delineated polygons corresponding to ‘wet’ and ‘dry’ classes is annotated. These annotations focus on
narrow streams and contain labels with shadows for both wet and dry, which are difficult to classify.
Polygons are drawn using the WV3 images as a reference to exploit its higher resolution. The dataset
contains a total of 5664 labels with 46.39% water polygons, distributed on the three Aols. We split
the dataset into train (5121) and test sets (543), so that they do not overlap spatially.

4 Methodology

Semantic segmentation model We consider the architecture U-Net [11] as a starting point. We
modify it to have two downstream branches (PlanetScope images and LiDAR products) each taking
a different size input. The branches are merged when the size of the feature maps is the same. To
provide the output at the resolution of the ground-truth (50cm/px) we add an upsampling convolution
step. We refer to this network as WasserNetz. See Appendix A.4 for an illustration.



Loss function We use the binary cross entropy loss, back-propagating only the pixels inside the
rasterized polygon, where ground-truth is available. This is required since only pixels within those
polygons are annotated. Also, the loss contribution of each example is weighted by the number of
labeled pixels in its ground truth, i.e polygon-level loss. This seeks to mitigate the bias due to polygon
size.

Dynamic Hydrology Map The derived synthetic valley network is a vector layer that delineates
all the reaches where water can flow. For each reach we consider its catchment area, that is, the
hydrological area unit in which all water ends up in the corresponding reach. Then we aggregate the
model prediction (pixel-level water probability map) over each catchment area, to give the probability
of having water. For an example, see Figure 2. This reach-level probability is computed by weighting
the pixel-level probability map by the distance to the reach, and it represents the likelihood of finding
water at any part of that reach. The reaches and their associated water probabilities give a static
snapshot of flowing water in the stream network. Applying this process to a time-series of images we
obtain the near-real time stream network*.

Figure 2: Left to right: 1) Synthetic valley network where each reach in the network is shown with a different
color. 2) Pixel-level water probability map (colormap: [0-"dry"/ 1-"water"] — [brown, blue]) 3) derived
stream-level hydrology map for a single day. 4) Annual stream-level hydrology map produced for 2019.

5 Results

We measure the performance of our water segmentation model with the accuracy at the pixel-level and
polygon-level. The latter seek to balance wet and dry classes since dry polygons are usually larger.
PR-curves,included in the appendix A.3, show similar behaviors. Table (1) shows the results for
different model configurations. The multi-sensor segmentation (LiDAR+PlanetScope) outperforms
by 3% the model trained only on Planet data. This shows that LIDAR-derived products complement
3m imagery yielding a significant improvement. The U-Net trained on WV3 (0.5m) outperforms
WasserNetz by 7%. This is expected, since below a critical width some streams can be resolved at
0.5m while not at 3m resolution. The Normalized Difference Water Index (NDWI) approach [22],
shown as a baseline, shows the worst performance, with a 30-40% loss in accuracy over all models.

Also, we quantify the sensitivity of our pixel-level hydrology maps w.r.t. the width of the streams
(Fig. 3). We perform this analysis on a subset (280 polygons) of our test set that include width
annotations enclosing the opposing banks of a water body. A positive relationship between width
and performance is observed for all models. In South Dakota, the WV3-trained model is the most
robust but without a significant performance margin. Also, South Dakota’s landscape conditions
seem to be favorable for WasserNetz (LiDAR+PlanetScope), as they allow it to be competitive to the
WV3-trained U-Net. Idaho (ID), with extensive shadows and canopy cover, poses an unfavorable
environment for PlanetScope-trained models, whose performance degrades significantly on streams
narrower than Sm. However, the performance gain of a multi-sensor model over a Planet only model
is 18% for narrower streams (<5m). This suggests that our approach can lead to a large improvement
in complex landscapes, especially for narrow streams (<5m).

Fig. 2 shows the annual (2019) stream-level water probabilities, produced by averaging daily stream-
level probabilities, derived from PlanetScope images through our proposed pipeline.

*Video on steps from pixel-level map, to stream-level, to dynamic hydrology map: bit.ly/pix2streams
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Figure 3: Models performance on wet polygons of the test dataset stratified by stream width.

Table 1: Polygon-level, pixel-level accuracy on test data. Mean (stdev) across 10 runs of different random seeds.

Data Model Input m/px Output m/px  Polygon-level Pixel-level
LiDAR+PlanetScope = WasserNetz 3 /1 0.5 88.24 (0.36) 94.34 (0.43)
wv3 U-Net 0.5 0.5 95.26 (0.23) 96.87 (0.21)
PlanetScope U-Net 3 0.5 85.42 (0.24) 91.60 (0.52)
wv3 NDWI 0.5 0.5 56.96 71.25

6 Conclusions

Our multi-sensor deep-learning model can segment water at unprecedented scales, from a fusion of
multispectral satellite imagery and LiDAR-derived products, processed at their native resolutions.
Fusing with LiDAR, compared to an optical-only model, improves the detection of narrow streams (<
5m) by 18% in difficult areas (with shadows and canopy cover), and by 8% in optically cooperative
areas. We derive the first dynamic hydrology map from the predictions of the semantic segmentation
model (WasserNetz) over a time-series of 2 years. We emphasize the trade-off between spatial and
temporal resolution in existing VHR instruments: even though this work pushes the observation
frontier down to the scale of 1-3m stream widths (30-60x over SOTA) with WorldView3 data, our
proposed pix2streams pipeline, and the main idea of our paper, rests on the availability of daily VHR
imagery, as exemplified by the PlanetScope constellation.

Future work We plan to extend our results to other regions that are optically cooperative and open-
source a larger dataset of annotated polygons. To further ease the interpretation of the stream-level
probabilities in our dynamic hydrology maps, more work must be done to disentangle the spatial
proportion of water coverage in a stream, from the uncertainty in a model prediction. The latter can be
further broken down into aleatoric uncertainty (noisy data and annotations) and epistemic uncertainty
(eg. ambiguity in features of shadow vs. water). Finally, we believe that the connectedness in
dendritic stream networks, as an inductive bias, can inspire new architectures and losses that improve
the data-efficiency and robustness in stream mapping.
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A Appendix

A.1 LiDAR derived products
The derivative data layers derived from the 1 meter resolution 3DEP DEMs over all study areas are:

e Sink-filled DEM

e Flow direction

e Flow Accumulation

e Synthetic reach network, thresholded to 10K square meters minimum catchment size
e Horizontal distance buffer to reach network

e Reach catchments

e Strahler stream order

e Height Above Ground (HAG).

Inputs to the WasserNetz models are the DEM, the Synthetic reach network, horizontal distance
buffer to reach network and Height Above Ground (HAG).

A.2  Co-registration

Co-registration issues are observed due to the different orthorectification methods used by the different
data sources. In particular, we observed shifts of WV images of around 1-20 meters compared with
the DEM and the PlanetScope images. An example of these shifts is shown in Figure. 4. This
misalignment will affect models with PlanetScope and/or DEM inputs trained with the polygons,
which were annotated using WV images as a reference. To fix this issue, we use off-the-shelf image
registration algorithms [23], to shift the polygons for each example when training on Planet and/or
LiDAR derived data. Although with this method we fix large misalignments between Planet/DEM
images and labeled polygons, small shifts might still be present as the different resolution of the
sources limit the shift corrections.

WV3 PanetScole

PlanetScope shifted [22 2] DEM shifted [22 2]

Figure 4: From left to right WV3 image, PlanetScope Image, PlanetScope image shifted to correct
the polygon shift, DEM image shifted to correct the polygon shift. Second row shows the same image
overlaid with training polygons.

A.3 Precision Recall Curves

A precision-recall curve shows the trade-off between precision and recall as we vary the threshold on
the output of the network. Figure 5 shows precision recall on the raw pixel output and re-weighted by



the number of pixels of each polygon. The crosses show the 0.5 probability threshold that was used
in the models for simplicity.
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Figure 5: Precision-recall curves of the different models on the pixel-level output (left) and weighted
per polygon, aka. polygon-level (right). Crosses shows the 0.5 threshold.

A.4 WasserNetz

Fig 6 shows the architecture of WasserNetz, our variant of the U-Net architecture adapted for
multi-sensor multi-resolution input fusion, and an output at some desired target resolution.

With a U-Net backbone, the design of WasserNetz follows common practices of image processing,
such as resampling, which defines our multi-sensor multi-res input fusion [24]. We also resample the
output to evaluate it at the native resolution (30-40cm/px) of our ground-truth — a common practice in
super-resolution [25, 26].

In light of our limited labeling resources, our sparse but pixel-based annotations allow a trade-off
between full and weak supervision [19], see Section 3.
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Figure 6: WasserNetz architecture.
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