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Abstract

We explore a new method to improve machine-learning (ML) based severe hail
predictions. A temporal weighting scheme allows the random forest models to
increase importance of relevant feature data while maintaining general information
about the problem domain from other feature data. We show that the weighting
scheme improves forecast skill and forecaster rust. With a flexible design, this
method can produce localized forecasts under multiple different scenarios without
increasing computational expense.

1 Introduction

Damage from hail events between 2015-17 were three times more expensive than all other convective
hazards combined (Gallo et al., 2019). Accurate forecasts are needed to help mitigate the property
and subsequent economic losses associated with hailstorms. To aide forecasters in creating daily
severe hail forecasts, Gagne et al. (2017) and Burke et al. (2020) trained random forest (RF, Breiman,
2001) models on numerical weather prediction output to produce probabilistic next-day severe hail
guidance. Although skillful at predicting hail over the contiguous United States, neither machine
learning (ML) method explicitly represents the spatio-temporal development of severe thunderstorms,
a pivotal part of severe weather prediction in local environments (Smith et al., 2012; Allen et al.,
2020).

While forecast skill is important, ML models that adhere to forecaster’s physical understanding of
severe weather formation is essential for providing trustworthy guidance. Other methods explicitly
constrain ML models under physical assumptions (e.g., Beucler et al., 2019a,b; Boukabara et al.,
2019; Karpatne et al., 2017) to increase meteorological understanding, but this can be computationally
expensive and time consuming to tune. Rather than changing the ML models, selecting physically
relevant training data increases forecast interpretability without increasing model complexity or com-
putational load on model developers. However, arbitrarily choosing relevant data adds unnecessary
bias and may not translate well to different forecast scenarios. Instead, we use an autocorrelation
(Huitema and Laraway, 2006) method to define a flexible function that can vary with new data and
changes in model persistence. In this paper we demonstrate that including statistically chosen weights
improves an already skillful object-based RF framework for predicting severe hail. We compare the
weighted model to other hail prediction methods.
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2 Data Pre-processing

Data from the High-Resolution Ensemble Forecast System version 2 (HREFv2, e.g., Jirak et al.,
2018; Burke et al., 2020; Loken et al., 2017), a numerical weather prediction ensemble used by Storm
Prediction Center (SPC) forecasters, are input to the ML models as predictors. The observational
dataset that relates the input features to severe hail formation is a radar derived product, the Maximum
Estimated Size of Hail (MESH, Witt et al., 1998; Zhang et al., 2011; Smith et al., 2016). The
HREFv2 and MESH training data encompass 1 April to 31 July 2017 and 1 May to 31 August 2018,
the calibration data spans 1 May to 31 August 2019, and finally the testing period comprises data
from 1 May to 31 August 2020. The calibration method applied to the RF model output can be found
in Burke et al. (2020). As adding weights does not impact the data pre-processing method both the
unweighted and weighted ML models are trained, calibrated, and tested over the same data. Both
hourly datasets are initially gridded, however we extract storm objects to account for the relative rarity
of severe hail across the contiguous United States. Appendix A provides details on the storm-object
identification and storm tracking methods.

3 Adding Temporal Weights to Random Forests

Three RF models and an isotonic regression model together form the ML framework for severe hail
prediction. First, storm track values and their hail-producing class label are input to a RF classification
model, one model for each ensemble member. If a storm track is predicted to produce hail the data
are input to two RF regression models, one that predicts the scale parameter of a gamma distribution
and the other the shape parameter. Gridded hail tracks are produced by converting the storm track
values to percentiles, based on training set values, and extracting the associated percentiles from the
predicted hail size gamma distribution.

Grid points with hail sizes exceeding 25 mm (severe hail threshold) are retained from each member
and averaged across the ensemble to create neighborhood maximum ensemble probabilities of hail.
Finally, the unweighted hail probabilities are calibrated using an isotonic regression model, trained
on the calibration dataset, to adjust the non-zero probabilities for more reliable forecasts.

Differing from the original ML framework, the RF inputs are weighted to produce a localized
prediction. As neither the RF hyperparmeters nor the input data are changed, this method does
not substantially increase developer load. Weights can be based on timing information, spatial
information, a combination of the two, or any other priority type. Only temporal weighting will be
presented for this study. While this approach is theoretically simple, determining what data should be
prioritized can be a challenge.

We apply an exponentially decreasing function (equation 1) to the input storm tracks, where data
within the desired time frame receive full weight while data outside the period receive substantially
decreasing weight with time.

Weights = 5eα(time difference), α =
ln 1

5

Days when Auto-correlation Function below 0

The number of lags needed for the autocorrelation value of the storm-object tracking variable to drop
below 0 indicates at how many days outside a time period the input data receives a weight of 1, or are
less likely to be chosen by the RFs as important during training. The weights are multiplied by 5 to
heavily prioritize relevant data, which also means the alpha/threshold value must go to 0 when the
weights equal the natural log of one-fifth.

Other than this weighting factor, the ML method from Burke et al. (2020) remains the same and
will be compared to the weighted training models. Visually, Figure 1 demonstrates how adjusting
the alpha parameter creates functions allowing for more data persistence (higher alpha) versus less
persistent data (lower alpha). For an alpha of -0.1 data are irrelevant outside 15 days, while an alpha
of -0.32 reduces relevance to 5 days. Further explanation of how the weights are implemented in
a decision tree and a visual representation of the weighting method applied to the training data is
provided in Appendix B.

4 Results
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Figure 1: Weighting function at different al-
pha values. The time difference is in days
days from a given period, such as days out-
side a month

The temporally weighted and unweighted probabil-
ity forecasts are compared at different time scales to
determine the impacts of incorporating weights. Ad-
ditional hail prediction methods are verified against
the ML forecasts, including the SPC day 1 outlook
at 1200 UTC and 2-5 km updraft helicity values >75
m2s2, which have been related to severe hail predic-
tion (e.g., Sobash et al., 2016; Gagne et al., 2017). A
single subjective case study provides a visual analysis
of the hail forecasts while objective verification over
the testing dataset (1 May to 31 August 2020) de-
scribes forecast performance over the spring/summer
seasons.

4.1 Subjective Verification

Very large hail impacted parts of the southern plains
and Mid-Mississippi Valey on 4 May, 2020. Concentrated regions of observed hail are reported in
Kansas, Oklahoma, Arkansas, and Missouri (Fig. 2). Strong boundary-layer heating, dry-line and
surface warm front convergence, and intense upper-level shear caused severe convection to initiate
in southeastern OK and extend downstream of a 500 hPa speed maximum. The resulting supercells
from the initiated convection led to large hail formation in the aforementioned areas, as well as wind
damage and a couple of tornadoes.

Figure 2: Severe hail probability fore-
casts on 4 May, 2020 from the (a)
SPC day 1 outlook at 1200 UTC, (b)
updraft helicity proxy, (c) temporally
weighted RF model, and (d) unweighted
RF model. Black dots are observed se-
vere hail reports.

The day 1 SPC outlook at 1200 UTC includes severe hail
probabilities up to 30 % to account for the likelihood of
supercell development and very large hail (Fig. 2a). Sim-
ilar to the SPC outlook, the updraft helicity proxy (Fig. 2b)
also predicted a swath of higher probabilities from northern
Texas up to central Missouri, but extended probabilities
zonally from western Kansas to eastern Arkansas. The
updraft helicity proxy also increased the probability mag-
nitudes for this event, with values exceeding 60 % where
the greatest concentration of hail reports are located.

The two ML forecasts are similar to the SPC day 1 outlook
probability magnitudes and coverage compared to the up-
draft helicity proxy. Yet even without the added weights,
the ML forecasts focus more on the regions of greatest ob-
served hail than the SPC outlook. Adding temporal weights
(Fig. 2c) reduces the extent of 30 % probabilities as well
as non-zero probabilities to produce a forecast with smaller
false alarm area at the expense of missing a few reports the
unweighted ML forecast catches (Fig. 2d). Even with the
missed reports, the weighted forecast captures the concen-
tration of observed hail across central Oklahoma towards
Missouri. Overall, the ML predictions capture the regions
of highest hail-likelihood with greater precision compared
to the updraft helicity proxy and SPC outlook. Forecasters
from the 2020 Hazardous Weather Testbed Spring Fore-

casting Experiment commented that the 4 May weighted forecast "performed particularly well"
(Adam Clark, Personal Communication May 2020) indicating greater trust in the output.

4.2 Objective Verification

A reliability and performance diagram objectively compare the different severe hail predictions for the
2020 spring and summer seasons (Fig. 3). The reliability diagram is accompanied by the Brier Skill
Score (Brier, 1950), which ranges from -∞ to 1 where above 0 values are skilful, and a frequency
diagram in the top left. The SPC outlook produces the highest Brier Skill Score (0.09) (Fig. 3a)
although underforecasts compared to the observed local storm reports. The weighted ML forecast is
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Figure 3: (a) Reliability (forecast frequency in upper left, Brier Skill Score in legend) and (b)
performance diagrams verifying severe hail predictions from the SPC day 1 severe outlook at 1200
UTC, updraft helicity proxy, temporally weighted RF model, and unweighted RF model.

second most skillful forecast, with a Brier Skill Score value of 0.04 and more reliable predictions
than the unweighted forecasts and updraft helicity proxy, both of which overforecast with lower Brier
Skill Score values. With the performance diagram, although the updraft helicity proxy appears to be
most skillful overall (Fig. 3b), the individual probabilities show that the ML forecasts have greater
critical success index values (CSI, Schaefer, 1990), equivalent to the Intersection over Union score
for object segmentation. In addition, the ML forecasts contain lower false alarms (higher success
ratio) compared to the updraft helicity proxy at each probability threshold, with the weighted forecast
outputting the lowest false alarms and highest CSI values overall.

Combining the subjective and objective results indicates that the ML forecasts are more skillful than
the updraft helicity proxy, and show promise in focusing on areas of greater hail threat compared to
the SPC outlook. Both the reliability and performance diagrams indicate the weighted ML forecast
reduces false alarms compared to the unweighted and updraft helicity proxy predictions at the cost of
higher probabilities of detection, similar to Brooks (01 Jun. 2004). Reducing false alarm threat areas,
as seen with the weighted ML forecast evaluation, can be important to the value (Murphy, 01 Jun.
1993) of a forecast when making decisions (Simmons and Sutter, 2009; Brooks and Correia, 2018).
In general, adding temporal weights increases forecast skill in the regions that matter to forecasters.

5 Discussion and Future Work

With the addition of a weighting parameter in a previously skillful ML framework, we have demon-
strated that the weighted forecasts better highlight areas of high hail threat without compromising
forecast performance. When comparing the ML forecasts, weighted and unweighted, against two
baseline verification datasets, both ML predictions reduce false alarm area coverage and increas-
ing performance. The weighted ML forecasts were found to be more reliable and with increased
Brier Skill Score values during the 2020 spring to summer, with similar skill and bias based on the
probability of detection and success ratio of the ML forecasts.

The increased skill with ML forecasts that are weighted shows the feasibility of adding physical
information to the ML framework without high computational expenses (See more in Appendix B).
Additionally, the weighting parameter is flexible and can be tailored to different scenarios without the
need for new data, making it important for future localized ML model deployment. In the future we
plan to test different weighting functions and strategies to identify an optimal configuration.
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A APPENDIX: DATA PRE-PROCESSING DETAILS

Storm objects are created where gridded data values exceed a user-defined threshold at a single time
step, we use the maximum hourly upward vertical velocity (MAXUVV) ≥ 10 ms−1. The exceeding
points are grown out using an enhanced watershed algorithm to create storm objects (Gagne et al.,
2017). Objects that are close in time and space are connected to create storm tracks. Variables other
than MAXUVV are extracted from the grid points within the storm tracks, including geopotential
height, U wind, and V wind, MAXUVV, temperature, etc. at various levels throughout the atmosphere
(Burke et al., 2020). To reduce the gridded storm track data to singular points at each time step,
the predictor values are approximated using the mean, maximum, minimum, skewness, standard
deviation, 10th percentile, 50th percentile, and 90th percentile.

The predictor (HREFv2 data) storm tracks in close relative distance to the observation tracks (MESH
≥ 12 mm) are matched with a binary classification. The tracks classified as hail-producing are
additionally labeled using the shape and scale values of a gamma distribution that approximates
the hail sizes within a matched MESH track. These storm track labels (binary classification, shape
and scale parameters) are available hourly across the entire contiguous United States. These three
parameters are associated with each storm track example and become the labels for a random forest
classification model and two random forest regression models that predict the shape and scale
parameter. Gagne et al. (2017) describes the storm-object identification process in more detail with
additional changes in Burke et al. (2020).
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B APPENDIX: WEIGHTING EXAMPLES

Weights are implemented within the splitting process of each decision tree in the RF through the
“minimum impurity decrease" parameter. A node is split if the improvement in impurity equation is
below or equal to this parameter which is usually set to 0.

Improvement in Impurity =
Nparent

Ntotal
∗ (impurityparent−

Nright

Nparent
∗ impurityright−

Nleft

Nparent
∗

impurityleft)

The values for Ntotal, Nparent, Nleft, and Nright are counts of each example. However, when
adding weights the different N fields become a weighted sum, placing more importance on the higher
weighted samples. For example, let the impurity values be 0.21, 0.5, and 0.10 for the parent, right,
and left nodes. If the N field values are Ntotal : 100, Nparent : 50, Nleft : 37, and Nright : 13, and
no weights are applied the improvement in impurity is:

Improvement in Impurity = 50
100 (0.21−

13
50 ∗ 0.5−

37
50 ∗ 0.10) = 0.0003

If weights are included such that theN fields are higher because more relevant datapoints are included,
Ntotal : 250, Nparent : 100, Nleft : 62, and Nright : 38 , the improvement in impurity is:

Improvement in Impurity = 100
250 (0.21−

38
100 ∗ 0.5−

62
100 ∗ 0.10) = −0.0168

This value is at or below the minimum impurity decrease of 0, indicating that adding weights greater
than 1 increases the likelihood a split will occur if relevant data are present. The weights, however,
do not impact the actual number of examples or the impurity score.

We can further visualize how the weights apply to storm objects within the RF model for May, June,
July, August. In Figure 4 the larger the dot, the higher the weight. The regions of highest weight
for each month compare well to the monthly MESH climatology findings in Cintineo et al. (2012),
meaning that the weighting scheme is realistically adding spatio-temporal thunderstorm development
to the RFs without explicitly adding physical constraints that add to developer workloads. Further,
adding greater physical understanding of the data the RFs are more likely to chose for decision splits
increases the transparency of the ML process which is critical in trustworthy ML model deployment
within the meteorology community (McGovern et al., 2019).

Figure 4: Weights applied to storm objects from (a) May, (b) June, (c) July, and (d) August. The size
of the dot represents the weight it would receive in a random forest.
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