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Abstract

Inferring unknown edges from data at a graph’s nodes is a common problem
across statistics and machine learning. We study a version that arises in the field
of landscape genetics, where genetic similarity between organisms living in a
heterogeneous landscape is explained by a graph that encodes the ease of dispersal
through that landscape. Our main contribution is an efficient algorithm for inverse
landscape genetics, the task of inferring edges in this graph based on the similarity
of genetic data from populations at different nodes. This problem is important in
discovering impediments to dispersal that threaten biodiversity and species survival.
Drawing on influential work that models dispersal using graph effective resistances
[21], we reduce the inverse landscape genetics problem to that of inferring graph
edges from noisy measurements of these resistances. Then, building on edge-
inference techniques for social networks [12], we develop an efficient first-order
optimization method for solving the problem, which significantly outperforms
existing techniques in experiments on synthetic and real genetic data.

1 Introduction

Many datasets can be modeled as a weighted, undirected graph: G = (V,E) with nodes V =
{v1, . . . , vn} and additional numerical data x1, . . . , xn ∈ Rd at each node. E.g., in a social network,
nodes are users, edges are connections between users, and xi might contain information like a user’s
age, or political leaning. Often, node data is correlated with G’s connectivity structure, which can be
quantified using simple statistics like shortest path distance, or advanced metrics like personalized
PageRank or DeepWalk distance [27, 14, 28]. We often observe that, if vi and vj are strongly
connected under such measures, xi and xj tend to be more similar [15, 25]. This fact leads to an
interesting possibility that has been studied widely: even when edges in G are unknown, we can often
infer a graph whose connectivity structure is consistent with the observed node data [31, 4, 7, 17, 12].

We study an application of this sort of graph inference problem to landscape genetics, a field at the
intersection of landscape ecology and population genetics [19, 33]. Landscape genetics seeks to
explain genetic differences between populations of the same species that live at different geographic
locations. The goal is to understand how ease of movement between these locations (through the
landscape) affects genetics. Geographically isolated populations tend to have highly differentiated
gene pools, whereas ease of travel and intermixing leads to genetic similarity. In contrast to simpler
classical approaches [42, 36], modern methods in landscape genetics often measures isolation by
modeling the landscape as an undirected graph (the landscape graph). Each location (spatial cell) in
the landscape is associated with a graph node, which is connected by an edge to all geographically
adjacent nodes (see Fig. 1). Edge weights are chosen to reflect the ease of organism dispersal between
adjacent nodes, with high weight indicating ease of dispersal and low weight indicates inhibition.
Weights are tailored to specific species: e.g., an edge across a span of water would have low weight
for a ground-dwelling species which cannot traverse the edge. For an organism that prefers low-land
environments, edges crossing areas of high elevation would receive lower weight than low-land areas.
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Figure 1: To model a landscape as a graph it is
divided into cells (black grid) and each cell is
associated with a node (orange markers). Adja-
cent nodes are connected by weighted edges (or-
ange lines). In landscape genetics, each weights
are a function of underlying landscape data, e.g.
the average elevation of the edge.

It has been established that measures of pairwise
connectivity in a well-constructed landscape graph
correlate with pairwise genetic similarities between
populations living at different nodes. For example,
for many species, the weight of the least cost path
is known to correlate with genetic similarity mea-
sured using e.g., the fixation index [1, 6, 40]. More
recently, McRae’s influential paper Isolation by Re-
sistance popularized the use of effective resistance
distance as a connectivity measure in landscape ge-
netics [21, 43]. Effective resistances better model
organism dispersal, and thus correlate more closely
with genetic differences across landscapes [22].

Most studies that use landscape graphs to model species dispersal construct these graphs based on
expert knowledge of a species’ behavioral preferences (e.g, preferred elevation, vegetation cover, or
climate) [21, 34]. Multiple expert proposed graphs can be tested for fit [41, 18, 40, 35], but achieving
high levels of correlation with genetic data requires significant background information on a species
(which may be imperfect) and laborious hand-tuning. To address this issue, there has been interest in
moving beyond expert opinion, by algorithmically determining optimal edge weights [44, 30]. The
aim is to learn a function that maps measurable landscape parameters (e.g. vegetation cover, or if there
is human development along an edge) to edge weights. The resulting weighted graph should have
connectivity structure that correlates well with genetic differences across the landscape. We call this
parameterized graph inference problem inverse landscape genetics. Beyond refining expert-designed
landscape graphs, solutions to this problem would allow ecologist to infer information about species
dispersal based purely on collected genetic data, as opposed to simply explaining genetic data with
known ecological knowledge. Genetic information can then be used to understand species habitat
preferences, find bottlenecks in migration, or understand the impact of human development [20]. As
discussed in [44] and [10], algorithms for learning landscape graphs from data could therefore be
essential in future conservation and planning decisions, e.g. for wildlife corridor design.

Our Contributions. Despite interest in inverse landscape genetics, few effective algorithms exist for
the problem. Most approaches use simple variants of brute force search, relying on expert opinion to
obtain an initial graph and then searching over nearby weight functions to improve fit [34]. There
has been some work on more systematic approaches: [29] uses a genetic algorithm and [10] uses
local search heuristics like the Nelder-Mead and Newton line search. Our main contribution is to
show that the inverse landscape genetics problem can be solved more effectively using gradient
based optimization. In particular, we consider a version of the problem which correlates the effective
resistance between two nodes (a measure of graph connectivity) with the fixation index between
genetic data (a measure of genetic differentiation). Building on recent work on learning social
network edges [12], we show how to compute a gradient for an appropriately chosen graph-learning
loss, which requires differentiating through an effective resistances computation. We do so efficiently
using iterative solvers for positive semidefinite linear systems. To the best of our knowledge, our
method is the first for inverse landscape genetics that uses gradient based optimization and, while our
underlying objective is non-convex, it obtains faster and more reliable convergence on both synthetic
and real-world data than prior work. As an application of our fast algorithm, we are able to explore
questions of statistical complexity that have been raised in the landscape genetics literature [26].

2 Proposed Method
Notation. Denote the undirected landscape graph by G = (V,E,w), where V = {v1, . . . , vn} is the
vertex set, E is the edge set with size m = |E| , and w is a vector of non-negative edge weights. We
index E and w by their terminal nodes: edges are ei1j1 , . . . , eimjm and weights are wi1j1 , . . . , wimjm .
We can view the landscape graph as an electrical network where eij represents a connection with
conductance wij [38, 21]. Let rij = 1/wij denote the resistance of the connection. For a subset
S ⊆ V of nodes we have population genetic data x1, . . . , x|S| ∈ Rd. We only interact with this
data through a black-box measure of genetic dissimilarity: the specific choice of the measure is not
important. In keeping with prior work, our experiments use the fixation index, denoted by FST. A high
FST (close to 1) indicates greater difference between the genetic data in xi and xj . Let F ∈ R|S|×|S|
contain pairwise FST (or another dissimilarity) for all nodes in S, with Fi,i = 0 for all i.
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A central result in landscape genetics is that values in F will correlate well with the effective resis-
tances of an appropriately chosen landscape graph G [21]. Letting L be the weighted, unnormalized
graph Laplacian of G, the effective resistance between nodes i and j is equal to Rij = bTijL

+bTij ,
where L+ is the pseudoinverse of L and bij ∈ Rn is a vector with value 1 at position i, −1 at position
j, and 0 elsewhere. Effective resistance is lower when there are more low-resistance (i.e., high weight)
paths between vi and vj . It is known to be equal to the edge-weighted commute time between vi and
vj [5], which gives intuition for why it effectively quantifies organism dispersal through a landscape
[20]. Let R be the matrix of all pairwise effective resistances and let RS ∈ |S| × |S| be its principal
submatrix containing only resistances between nodes in S. The problem we study is as follows:

Problem 1 (Inverse Landscape Genetics). Given landscape graph nodes V and edges E we
are given a vector of environmental parameters Cikjk ∈ Rq for each eikjk ∈ E and a function
class P from Rq → R+ which maps these parameters to a weight for each edge. Assume P is
parameterized a vector θ with nθ parameters and denote functions in the class by pθ ∈ P . For
pθ, let pθ(E) = [pθ(Ci1j1), . . . , pθ(Cimjm)]. Our goal is to find θ∗ minimizing the loss:

θ∗ = argmin
θ
L(θ) = argmin

θ
‖RS(pθ(E))− F‖2F , (1)

where RS(pθ(E)) is the effective resistance matrix for the landscape graph G = (V,E, pθ(E)).

RS(pθ(E)) and F have zero diagonals, so the Frobenius norm in (1) is just twice the standard squared
error between effective resistances and genetic dissimilarities. Other loss functions could also be
used, like the inverse Mantel correlation [10]. In any case, the goal is to find a weight function so
that G’s effective resistances are as close as possible to the measured genetic dissimilarities in F .
Alternatively, if we can think of these dissimilarities as noisy measures of the true effective resistances
for some unknown landscape graph G∗, then Problem 1 can be viewed as the task of recovering G∗.

Example functional forms. In Problem 1, weights in the learned graph are a function of
environmental parameters about each edge. This function can take any form: we only require that it
is differentiable. A typical choice is to have 1/wikjk = rikjk follow an inverted Gaussian relation
governed by parameters θ = [β, βopt and βSD], which indicates a preferred parameter value/range
for a species (e.g. preferred elevation) [10]. Another common functional form is linear, which is
often used with for discrete (e.g., binary) data which indicates the presents of conditions that could
impact dispersal, like forest cover or human development. It is also natural to add multiple functional
forms for a combination of continuous and discrete data. E.g. we might have rikjk = rE

ikjk
+ rLC

ikjk

where rE
ikjk

is an elevation term in the form of (2a) and rLC
ikjk

is a landcover term in the form of (2b).

1

wikjk
= β + 1− βe

−(Cikjk
−βopt)

2

2β2SD (2a) and 1

wikjk
= αTCikjk . (2b)

Efficient gradient computation. Since there is no closed form solution for (1), the cornerstone of
our approach is to find an approximate solution by using projected gradient descent. To do so, we
need an efficient method for computing the gradient of L(θ). The following is proven in Appendix A.

Proposition 1. Let J ∈ Rm×nθ be the Jacobian with Jk,h =
∂wikjk
∂θh

. Let B denote G’s edge-vertex
incidence matrix, with kth row equal to bikjk , where ik and jk are the terminal nodes of edge eikjk .

∇θ(L) =
∑

vl,vk∈S

(
Flk − bTlkL+

θ blk
)
· 2J · (bTlkL+

θ B)◦2,

where ◦2 is the Hadamard power and Lθ is the Laplacian of the graph with weights pθ(E).

Since the number of parameters nθ is typically small, computing J is efficient for any differentiable pθ.
So, if we have computed bTlkL

+
θ B for all vl, vk ∈ S, the gradient can be computed in O(|S|2 ·m · nθ)

additional time. And, since every row in B is 2 sparse, bTlkL
+B can be computed in O(m) time once

bTlkL
+ = L+blk is computed. Sincem = O(n) in most landscape genetics applications (e.g. m ≈ 4n

for a grid), the bottle neck is therefore computing each L+
θ blk. This naively requires inverting the

n× n Laplacian Lθ, which is computationally impractical for large graphs. We instead approximate
the L+

θ blk using an iterative linear system solver, specifically MINRES in our experiments. To
optimize the approach further, we note that L+

θ blk = L(w)+el − L+
θ ek where el and ek are standard

basis vectors. Accordingly, we only need to solve |S| linear systems and can then recombining those
solutions to return all

(|S|
2

)
vectors L(w)+blk needed for the gradient computation.
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3 Empirical Results

We test our optimization method and compare it against local search heuristics used in prior work [10]
on synthetic genetic data and real data for the North American wolverine (Gulo gulo) [16], for which
we have FST values for 6 populations living across Alaska. We use elevation [24] and land cover data
[11] to parameterize the edge weight function in the landscape graph. Details of the experimental
setup are discussed in Appendix B, and additional results are provided in Appendix C.
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Figure 2: Relative error between recovered and true parameters for synthetic data with increasing
|S| and noise σ̃ for discrete (2a), continuous (2b) and combined edge functions. Parameter recovery
improves with more samples and descreased noise.
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Figure 3: Relative objective function value (Fig. 3a) and R2 values computed for a linear fit between
FST and effective resistances in the learnt landscape graphs for real-world data. Gradient-based
optimization (Fig. 3c) obtains a better fit compared to Nelder-Mead (Fig. 3b) and converges faster.
Synthetic data. We select a 50x50 subgrid of an Alaska landscape (|V | = 2500, |E| = 4900).
We then construct a ground truth graph by randomly sampling parameters θtrue and evaluating
the weight function for all edges. We construct the pairwise effective resistance matrix RS(wθtrue)
for a small subset of nodes S and produce a simulated genetic similarity matrix F by setting
Flk =

[
RS(w

θtrue)
]
lk
+ z̃ where z̃ ∼ N (0, σ̃). The goal in our synthetic experiments is to recover

the ground truth. We test with σ̃ = {0, 0.05µ, 0.2µ}, where µ is the mean resistance in RS(wθtrue),
corresponding to (no, low and high noise) case. For parameters θ obtained after optimization, we
report the relative error ‖θ − θtrue‖2 / ‖θtrue‖2. We ignore parameters for landcover types present
at less than 1% of nodes as they cannot be determined with any level of accuracy (since they have
essentially no impact on graph effective resistances). As seen in Figure 2, as |S| increases, we obtain
high quality approximations of θtrue, even in the high noise regime. Overfitting for small |S| has been
raised as concern in the literature, i.e. the landscape graph fit to F may not generalize to new data
[26]. We further validate our method against overfitting in Appendix C, showing that even when |S|
relatively is small (e.g., ≥ 25), test loss converges along with train loss, implying good generalization.

North American wolverine (Gulo gulo). For real-world data, the FST values range from 0 to 1 and
we have access to genetic data at 15 nodes out of 24035 nodes. After fitting θ with our gradient
based method, we compute the R2 value for a linear fit between recovered resistances and FST
values (Figure 3), a metric used in prior work [22]. We obtain an R2 value of 0.7383 using gradient-
based optimization and 0.6203 using Nelder-mead, in comparison to 0.68 (5km resolution) and
0.71 (50km resolution) obtained by [22] using expert opinions. Note that [22] use a binary map
as habitat/nonhabitat for underlying landscape with 12 populations whereas we use a multivariate
surface with continuous and discrete data with 6 populations.

Conclusion. By formalizing the Inverse Landscape Genetics problem as a graph inference problem
involving effective resistances, we show how to apply powerful optimization methods to this scientifi-
cally important problem. Doing so already provides a promising alternative to existing heuristics,
and will allow researchers to more efficiently and effectively solve real-world problems, or to explore
synthetic problems at scale. A major open research direction is to develop further theory around the
problem formalized in this paper. We discuss several specific questions in Appendix E.
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A Details of Proposed Method

Proof of Proposition 1. For given parameters θ, let wθ = pθ(E), where pθ(E) is as defined in
Problem 1. We have:

∇wθL = −2
∑

vl,vk∈S

(
Flk −R(wθ)lk

)
· ∇wθR(wθ)lk (3)

As in Problem 1, R(wθ) is the matrix of all pairwise effective resistances for the graph G =
(V,E,wθ). From the definition for effective resistance, R(wθ)lk = bTlkL

+
θ blk. As in [12], we can

obtain a partial derivative for entries of L+ with respect to wθ via the Sherman-Morrison formula for

rank one updates to the pseudoinverse. Specifically, we have ∂L+
θ

∂wθij
= −L+

θ bijb
T
ijL

+
θ and thus

∂R(wθ)lk
∂wθij

= −bTlk
(
L+
θ bijb

T
ijL

+
θ

)
blk = −(bTijL+

θ blk)
2

It follows that∇wθR(wθ)lk = −(bTlkL+
θ B)◦2. The proposition follows from plugging this equation

into (3) and noting that∇θ(L) = J · ∇wθL.

B Details of Experiments

The landscape graph graph is constructed by dividing the Alaska region into a grid of square cells. We
choose a resolution of 15 km, which lead to a graph G = (V,E) with |V | = 24035 and |E| = 47746.
Our landscape data comes as raster images, with each pixel corresponding to a region of 100× 100
meters for elevation data and 30 × 30 meters for landcover data, so we have multiple pixels of
information within each landscape cell. We choose resolution of 15km to have a reasonably sized
graph, compared to previously used 5km and 50km [22]. We use the re-sampling tool from ArcMap
with the ‘nearest’ technique for land cover data and ‘bilinear’ technique for elevation data, to change
the resolution1.

Continuous and discrete environmental parameters are then collected for each edge in the graph from
the raster. For edge k, edge elevation CE

ikjk
is taken as the average elevation at cells i and j and

scaled to lie within the range 0-10. For each edge we also construct a vector of one-hot-encoded
landcover data CLC

ikjk
, which has 17 entries for landcover types like evergreen forest, barren land, or

open water. Each entry in CLC
ikjk

is given values as follows: 0 if the landcover type is absent at cell i
and j, 0.5 if present at either cell i or j, or 1 if present at both cells i and j. We model edge weights
as a function of these parameters by linearly combining equation (2a) for elevation data and (2b) for
landcover data.

To minimize (1), we implement a projected gradient descent method with RMSProp step size
adjustment, which adjusts learning rate by a decaying average of squared gradients [39]. Since edge
weights are constrained to be non-negative, and all edge data is non-negative, we project parameters
to max(ε, θ) with 0 < ε ≤ 1 at each gradient step. This ensures non-zero resistance value for all
landcover types, which is a constraint often imposed in prior work. All experiments were run on
server with 2vCPU @2.2GHz and 13 GB main memory.

For experiments with real-world genetic data, we set the edge weight to 0 if any node for the edge
had landcover type as ‘unclassified’ whereas for synthetic data we set corresponding α parameter
to high value which results in minuscule edge weight. For optimization, we initialize β as 1 and all
other parameters (θtrue) randomly from a discrete uniform distribution, as a small initial value for β
provided us with most consistent results. For setting the true parameters θtrue and initialization, we
sample βopt and βSD from range 0-10 and α from range 0-100 for synthetic data experiments. For
experiments with real-world data, we initialize βopt and βSD similarly but for alpha we use the range
1-10. We run all experiments with RMSProp for 5000 iterations using learning rate of 0.1 and 0.9 for
γ parameter. For projecting parameters as max(ε, θ), we use ε = 1 for synthetic data experiments
and ε = 10−20 for experiments with genetic data for North American wolverine for the parameters
θ = {β, α ∈ R17}. For βSD we use ε = 10−3. Projecting to a small ε > 0 instead of exactly 0 helps

1These are the recommended techniques from the software documentation. We refer the reader to https:
//desktop.arcgis.com/en/arcmap/10.3/tools/data-management-toolbox/resample.htm
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(c) Landscape with continuous and discrete
data with N = 100.
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(d) Landscape with continuous and discrete
data with N = 150.

Figure 4: Relative error between recovered parameters and true parameters with gradient descent iteration, for
various values of noise standard deviation σ̃, for landscape graph with continuous and discrete data. Higher
value of N provides better recovery.

avoid numerical issues when computing the gradient and prevented the algorithm from getting stuck
in local minima. We scale the Fst values by a factor of 105 to ensure stable gradient computations.

Note that for reporting R2 values for linear fit between pairwise effective resistances of learnt
landscape graph and FST values, [22] use FST

1−FST
instead of FST values whereas we use FST, but as

FST << 1 for the data under consideration, the R2 values are approximately equal.

C Additional Experiments

C.1 Synthetic data experiments

We present results for synthetic data experiments. We note that when only elevation data is considered,
we consistently obtain good recovery for βopt and βSD but not for β. Although the recovery is not
consistent across all parameters, βopt and βSD are typically more meaningful to researchers, indicating
the preferred elevation range and range of elevation of the species. We conclude that as the number
of nodes sampled(N ) increases, we obtain good approximations to the true parameters θtrue.

For parameter recovery with different settings ofN , we observe thatN = 150 is sufficient for reliable
recovery of parameters. Appendix Figures 4, 5 and 6 show the relative parameter approximation
error with gradient descent iteration. For landscape graph with only discrete data with N = 25
and σ̃ = 0.2µ, we observe overfitting where the relative parameter error increases with iteration in
Appendix Figure 6a.

C.2 Addressing overfitting

It has been noted in the literature that a potential concern with optimizing landscape graphs is
overfitting when N is small. i.e., the landscape graph fit to F does not generalize to new data [26].
To validate our method against overfitting, we randomly split nodes into sets Strain and Stest. We learn
parameters θ for nodes in Strain and evaluate these parameters against pairwise effective resistances in
Stest. Even in the high noise setting, with σ̃ = 0.2µ, test loss converges along with train loss when N

9
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(a) Landscape with continuous data and N =
25.
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(b) Landscape with continuous data and N =
50.
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(c) Landscape with continuous data and N =
100.
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(d) Landscape with continuous data and N =
150.

Figure 5: Relative error between recovered parameters and true parameters for continuous data with gradient
descent iteration, for various values of noise standard deviation σ̃, for landscape graph with continuous data.
Higher value of N provides better recovery.
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(a) Landscape with discrete data and N = 25.
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(b) Landscape with discrete data and N = 50.
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(c) Landscape with discrete data andN = 100.

Figure 6: Relative error between recovered parameters and true parameters for discrete data with gradient
descent iteration, for various values of noise standard deviation σ̃, for landscape graph with discrete data. Higher
value of N provides better recovery and we observe overfitting for high-noise with N = 25.
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(c) Relative train and test loss for Ntrain = 50.
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(d) Relative train and test loss for Ntrain = 100.

Figure 7: Relative train and test loss for different values of sampled train nodes with σ̃ = 0.2µ. We obtain
good generalization, for N ≥ 25, mitigating the concern for overfitting with low data.

is as low as 25, (appendix figure 7). This implies good generalization and a lack of overfitting, even
though we do not accurately recover all parameters in θtrue. This is not necessarily surprisingly: it
indicates that, while the inverse landscape genetics problem may be poorly conditioned with respect
to θ (a fact observed in [10]) it is still possible to obtain reliable predictive models with little data.

C.3 Comparision with existing approaches

We compare gradient-based optimization to the Nelder-Mead method, which has been used in prior
work on inverse landscape genetics [10]. We observe that our method is faster in terms of convergence
and also better at recovering true parameters with enough data. Nelder-Mead eventually achieves
comparable performance in terms of train loss but fails at recovering the true parameters (Figure 8). To
ensure a fair comparison, we choose the same random initialization of parameters and non-negativity
constraints2.

D Additional Related Work

Relevant related work on landscape genetics is discussed in the introduction. Here we add important
comments on additionally related work in graph learning. In particular, in Section 2, we frame the
inverse landscape genetics problem as a problem of learning edge weights in a graph from (noisy)
measurements of the effective resistances. This problem was directly addressed in [12], which our
paper builds on. It has also been studied elsewhere. For example, it is well known that you can
recover a graph exactly if you know effective resistances between all pairs of nodes.

This can be done in polynomial time [37]: access to all effective resistances allows you to reconstruct
the pseudoinverse of the graph Laplacian, which can then be inverted using a generic O(n3) time
method, or more efficient algorithms [13]. Unfortunately, when only a subset of effective resistances
are known, no polynomial time algorithm is known for recovering a graph consistent with those
measurements. However, as observed in [12] and this paper (where we study a somewhat different
parameterized problem) graph recovery can be framed as an optimization problem and solved to a
global optimal with first order methods, despite inherent non-convexity. Recovering edge information
from effective resistances has also been studied for the special case of tree graphs. In a tree, the
effective resistance is the inverse of the shortest path distance between nodes i and j. There has been

2Note that Nelder-Mead is an unconstrained optimization method, so we add a projection step to ensure
interpretable parameters are found. This does not noticably effect the behavior of convergence in our experiments.
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(a) Comparison of relative loss with iteration for
Nelder-mead with projection and gradient-based
approach.
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tion(with projection for Nelder-Mead).
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(c) Comparison of relative loss with iteration for
Nelder-mead without projection and gradient-
based approach.
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Figure 8: Comparison of proposed method to a heuristic optimization technique. Gradient-based
optimization is faster in convergence and better at recovering true parameters with enough data.
Experiments are for synthetic data with high noise setting with N = 150 and σ̃ = 0.2µ.

a lot of interest in reconstructing trees from actual and partial measurements of these distances [32, 3].
Applications include the reconstruction of phylogenetic trees in genetics [8, 9].

Finally, we note that our problem is related to that of inferring graphical models [2, 23], which
has been studied in different formulations across machine learning, statistics, and graph signal
processing [7, 25]. The common assumption is that the correlation matrix between data at each node
is related to the adjacency or Laplacian matrix of an unknown graph. Several work explore how
many samples are needed to learn the structure of this graph, often under additional assumptions
like graph sparsity [31, 4]. Our work makes a structural assumption that the graph underlying our
data has both a simple edge structure (i.e., its a grid graph) and that edges weights are functions of
relatively low-dimensional edge data (i.e., landscape information). An interesting direction for future
work is theoretically exploring the implications of these strong assumptions on bounding the sample
complexity of the inverse landscape genetics problem.

E Future Directions

As mentioned, an important research direction is to develop further theory around the problem
formalized in this paper. For example, as discussed in [12], while non-convex gradient descent
methods seem to perform well, it remains unclear if Problem 1 can be provably solved in polynomial
time.

In terms of statistical complexity, our problem is related to that of inferring graphical models [2, 23],
which has been studied in different formulations across machine learning, statistics, and graph signal
processing [7, 25]. The common assumption is that the correlation matrix between data at graph
nodes is related to the adjacency or Laplacian matrix of an unknown graph. Several works explore
how many samples are needed to learn the structure of this graph, often under additional assumptions
like graph sparsity [31, 4].
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Our work makes a structural assumption that the graph underlying our data has both a simple edge
structure (i.e., its a grid graph) and that edges weights are functions of relatively low-dimensional
edge data (i.e., landscape information). An interesting direction for future work is understanding
if these natural assumptions can be used to formally bound the sample complexity of the inverse
landscape genetics problem.

Doing so will likely require a better understanding of how samples should be collected for optimal
inference. By choosing to collect organism samples in specific geographical locations, we often
have control over exactly which graph nodes data is collected for. Empirically, sample design can
have substantial impact on how much data is needed to solve the inverse landscape genetics problem
[26]. Again, we hope that our work provides a starting point for further exploration of this important
question. Progress would allow researchers to more efficiently study the dispersion of at-risk species,
for which it is difficult to collect substantial genetic data.
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