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Abstract

Earthquake monitoring through seismometer networks typically involves a
pipeline consisting of detection, phase picking, association, and localization
stages. We introduce an earthquake detection and localization method based on
a novel end-to-end deep neural network architecture that maps collections of raw
seismic waveforms to proposed event times and epicenter locations. Unlike tra-
ditional approaches to this task, our method does not rely on hand-designed time
series features or rules for combining predictions across multiple stations. We
evaluate our proposed method on data from the 2019 Ridgecrest earthquake se-
quence, demonstrating its effectiveness when compared with four state-of-the-art
earthquake catalogs.

1 Introduction

Earthquakes are routinely monitored by local and global seismic networks, which consist of tens
to thousands of seismometers that continuously record ground shaking. Most earthquake moni-
toring systems detect earthquakes by two stages: seismic phase detection and phase association
(Figure 1). First, a phase detection algorithm identifies candidate earthquake signals independently
at each station; then, an association algorithm combines these candidates by checking if the times
are consistent with the travel-times from a common earthquake epicenter. This two-stage approach
is robust and effective in most cases. However, a disadvantage of this two-stage approach is that it
relies on accurate detection at a single station – a difficult task for low signal-to-noise ratio arrivals
from small earthquakes whose numbers dominate the catalog. The association stage typically does
not exploit potentially informative waveform features across stations. An alternative approach is to
develop array-based earthquake detection, which could improve the sensitivity for events that are
too weak to be detected reliably by a single station.

We propose an end-to-end earthquake monitoring method that combines the detection and associ-
ation stages within an end-to-end deep neural network architecture. Our architecture first extracts
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Figure 1: Schematic of earthquake monitoring through seismometer networks: (a) continuously
recorded seismic data; (b) the monitoring tasks include: detecting earthquake signals, associating
signals from a common earthquake, and (c) estimating earthquake times and locations.

features from the seismic waveforms recorded at each station in the network, and then aggregates
the resulting feature vectors using a pre-specified velocity model for wave propagation in the region.
A classification network then processes these aggregated features to identify candidate events over
a spatiotemporal grid. A distinguishing characteristic of our approach in comparison with tradi-
tional methods is that we jointly optimize the parameters of the feature extraction and classification
networks to maximize detection accuracy over a training dataset of seismic waveforms and ground-
truth events, thus avoiding the need for hand-designed features and association rules for combining
detections across multiple stations.

2 Related Work

Station-based earthquake detection and phase picking Current earthquake detection and seismic
phase picking methods are mainly developed for a single station by designing features, such as
changes of amplitude and frequency content, to detect the arrival of seismic waves [1, 2, 3, 4, 5, 6, 7].
Recently, deep learning has emerged as an effective method for earthquake detection and phase
picking [8, 9, 10, 11, 12, 13, 14, 15]. However, these methods only use single-station information
and must be subsequently aggregated with an association step for application to seismic networks.

Seismic phase association Association methods aim to integrate detections from all seismometers
in a network to determine if these detections come from a true earthquake event by imposing a phys-
ical constraint on the travel-times of seismic phases, based on earthquake location, station locations,
and a wavespeed model for the Earth [16, 17, 18, 19, 20]. Recently, deep-learning-based association
methods have also been proposed based on learned phase arrival-time patterns [21] or waveform
similarity [22, 23].

Array-based earthquake detection and location An alternative approach to the two-stage method
is to detect and locate earthquakes directly while considering multiple waveforms recorded across
a seismic array/network. Methods like multi-station template matching [24, 25, 26] and shifting-
and-stacking [27, 28, 29] explore the coherent waveform signals between events and stations and
combine multiple waveforms to enhance detection sensitivity.

Object detection Earthquake monitoring bears some similarity to object detection in computer vi-
sion, which aims to locate and classify objects in an image [30, 31, 32, 33, 34]. Modern CNN-based
object detection methods such as YOLO [34] scan a set of coarse grids to classify object categories
and predict bounding boxes. Similarly, earthquake monitoring aims to detect an earthquake by
determining its time and location, so we scan a 4D spatial-temporal volume to detect and locate
earthquakes in our end-to-end model.

3 Method

Model Architecture Our end-to-end model architecture (Figure 2) consists of three primary com-
ponents: (1) a feature extraction network, (2) a time shifting module, and (3) a feature aggregation
network. The input to the feature extraction network is a time series of seismometer measurements
at a monitoring station. We first convert the raw waveform to a short-time Fourier transform repre-
sentation. The feature extraction network, parameterized as a modified Wide Residual Network [35],
then maps this 2D signal representation to a sequence of feature representations. We use the same
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Figure 2: Architecture of the end-to-end earthquake monitoring model.

feature extraction network for each station in the network; this allows for our approach to adapt to
changes in the number of stations in the network. The time shifting module takes as input a can-
didate hypocenter location and the features extracted in the previous stage. Its output is an aligned
view of the features, where the time series from each station is shifted by the theoretical travel time
of the seismic wave from the candidate hypocenter to the station. This travel time is computed using
a pre-specified velocity model, thus allowing practitioners to incorporate prior knowledge on phys-
ical constraints into the pipeline. Intuitively, high-activation features from multiple stations should
coincide at the true hypocenter of an earthquake, thus allowing the network to localize events and
to avoid false detections due to local noise at each station. Finally, the feature aggregation network
combines these shifted features and classifies whether or not an earthquake exists at each candidate
location and each time point. We describe the network architecture in more detail in Table A1.

Training and inference The feature extraction and feature aggregation steps are the same for both
training and inference, while the input data length and the sampling strategy of the time shifting
module is different. During training, we sample one earthquake from the SCSN catalog and cut a
time window containing the corresponding seismic signals as input data. The time shifting module
selects the cataloged earthquake location and 5 other random locations (negative samples) to gener-
ate 6 sets of shifted features for training. This negative sampling process helps balance the sparse
true earthquake locations relative to the candidate locations in the entire 3D space and speeds up the
training. During inference, we take the continuous seismic waveforms (Nt) as input data. The time
shifting module uniformly samples the whole space at Nx×Ny grid points with a horizontal inter-
val of ∼2 km. From the spatial-temporal predictions above a threshold, we first extract earthquake
times from peaks along the time axis (Figure A1c) and then determine the earthquake location using
the geometric median of the top 20 activated grids (Figure A1d).

4 Evaluation

Data Two large earthquakes of magnitude 6.4 and 7.1 shook the Ridgecrest area in July, 2019.
These earthquakes triggered a large sequence of aftershocks, which provide a good dataset for train-
ing and evaluating our model. From the Southern California Seismic Network (SCSN) earthquake
catalog, we collected 42,660 reported earthquakes (black dots in Figure A1a) from Apr 1st, 2019 to
Dec 31st, 2019 and downloaded the continuous seismic waveforms from the seismic stations within
∼100 km (blue triangles in Figure A1a). We selected continuous waveforms of July 7th with 1,226
earthquakes as the validation dataset and the continuous waveforms for July 5th and 6th with 4,769
earthquakes as the test dataset. Earthquakes were most frequent during these three days, making the
detection task challenging. The remaining data are used for training our end-to-end model.

Benchmarks The Ridgecrest earthquake sequence has attracted a great deal of research atten-
tion. In addition to the SCSN catalog, Liu et al. [36] built a catalog using the deep-learning-based
PhaseNet [11] picker and REAL [19] association. Shelly [37] and Ross et al. [38] built two different
catalogs using the template matching method, which takes earthquakes in the SCSN catalog as tem-
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Figure 3: Performance on the test dataset: (a) precision-recall curves compared with four different
catalogs; (b) estimated earthquake locations; (c) error distribution of earthquake time; (d) error
distribution of earthquake location compared with the SCSN catalog.

Table 1: Performance of the end-to-end
method compared with state-of-art catalogs.
Comparing catalog Precision Recall F1

SCSN 0.620 0.807 0.701
Ross et al. (2019) [38] 0.849 0.443 0.582
Shelly (2020) [37] 0.775 0.726 0.750
Liu et al. (2020) [36] 0.793 0.824 0.808

Table 2: Performance comparison assuming
Shelly [37]’s catalog as ground truth.
Catalog Precision Recall F1

SCSN 0.834 0.598 0.696
Ross et al. (2019) [38] 0.489 0.877 0.628
Liu et al. (2020) [36] 0.836 0.756 0.794
End-to-end method 0.775 0.726 0.750

plates and scans the continuous seismic data to detect more small earthquakes. The SCSN catalog
reports 4,769 earthquake, Liu et al. [36] detect 5,536 earthquake, Shelly [37] detects 6,702 earth-
quakes, and Ross et al. [38] detect 11,224 earthquakes. These state-of-art catalogs provide useful
benchmarks for evaluating the performance of our end-to-end method.

Results Figure 3a shows the precision and recall curves compared with the four catalogs on the
test data between July 5th - 6th. Our end-to-end model detects 5,807 earthquakes with a threshold
of 0.2. We consider the earthquakes within 5s from the catalog time as true positives and report the
corresponding precision and recall values in Table 1. Most earthquakes of these catalogs (except
Ross et al. [38]) can be detected by our method. Assuming Shelly [37]’s catalog as ground truth,
our end-to-end method achieves similar performance as the other state-of-art catalogs (Table 2).
The error distributions of earthquake time and location compared with the SCSN catalog are shown
in Figure 3c and d. Most detected earthquakes have a time difference within 1 s and an epicenter
difference within 5 km. We also observe that the earthquake spatial distribution is similar to the
SCSN catalog in Figure 3b.

5 Conclusions

Deep learning is an effective approach for earthquake detection, however, current methods that pro-
cess a single seismic waveform as an isolated 1D time series may not realize its full potential. We
developed an end-to-end array-based method that combines detection and association. Our method
simultaneously trains two neural networks – for feature extraction and aggregation – so that the
model can process multiple waveforms from a seismic network to improve detection sensitivity and
reduce false positives. The evaluation results on a temporally dense earthquake sequence demon-
strates that our end-to-end model can effectively detect and locate earthquakes.
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Appendix

The parameters of the feature extraction and feature aggregation networks are shown in Table A1.
We use the AdamW [39] optimizer with a learning rate of 3 × 10−4 and a weight decay rate of
5 × 10−4 for training the two networks. We also add a cosine learning rate decay strategy [40]
for training with a total 12.5 million repeatedly sampled earthquakes. The training dataset and an
earthquake example is shown in Figure A1.

Table A1: The network parameters of the end-to-end model in Figure 2
Module Parameters

Feature Extraction

Layer 1: Short-time Fourier transform

Layer 2: 2D convolution [k=3×3, c=16] with stride [1×1]
+ batch normalization + leaky relu

Layer 3: Residual block: 2D convolution [k=3×3, c=32] with stride [2×1]
+ batch normalization + leaky relu

Layer 4: Residual block: 2D convolution [k=3×3, c=64] with stride [2×1]
+ batch normalization + leaky relu

Layer 5: Residual block: 2D convolution [k=3×3, c=128] with stride [2×1]
+ batch normalization + leaky relu

Layer 6: Fully connected layer + leaky relu

Feature Aggregation
Layer 1: 1D convolution [k=3, c=128] + batch normalization + leaky relu
Layer 2: 1D convolution [k=3, c=64] + batch normalization + leaky relu
Layer 3: 1D convolution [k=3, c=1] + batch normalization + sigmoid

(a) (b) (c)

(d) (f )
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Figure A1: Dataset and examples: (a) The 2019 Ridgecrest earthquake sequence (black dots) be-
tween Apr 1, 2019 and Dec 31, 2019 and nearby seismic stations (blue triangles) from the Southern
California Seismic Network (SCSN). (b) One example of earthquake waveforms recorded by these
stations. (c) The aggregated prediction along the time axis from which we extract the earthquake
time. (d) The aggregated prediction along spatial axes from which we determine the earthquake
epicenter. (e) Waveforms re-ordered based on the earthquake epicenter distance, which shows the
physical relationship between the epicenter distance and the arrival time and amplitude recorded at
each seismic station.
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