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Abstract

Global warming is leading to unprecedented changes in our planet, with great
societal, economical and environmental implications, especially with the growing
demand of biofuels and food. Assessing the impact of climate on vegetation is
of pressing need. We approached the attribution problem with a novel nonlinear
Granger causal (GC) methodology and used a large data archive of remote sensing
satellite products, environmental and climatic variables spatio-temporally gridded
over more than 30 years. We generalize kernel Granger causality by considering
the variables cross-relations explicitly in Hilbert spaces, and use the covariance in
Gaussian processes. The method generalizes the linear and kernel GC methods,
and comes with tighter bounds of performance based on Rademacher complexity.
Spatially-explicit global Granger footprints of precipitation and soil moisture on
vegetation greenness are identified more sharply than previous GC methods.

1 Introduction

Establishing causal relations between random variables from observational data is perhaps the most
important challenge in today’s science in general and in Earth sciences in particular [1]. Granger
causality (GC) [2] was introduced as a first attempt to formalize quantitatively the causal relation
between time series, and is the most widely used method. The intuition behind GC is to test whether
the past of X helps in predicting the future of Y from its past alone. GC implicitly tells us about the
concept of information using forecasting. Other methods rely on similar concepts of information flow
and predictability: connections can be established between GC and transfer entropy [3], convergent
cross-mapping [4], and with the graphical causal model perspective [5]. Noting the strong linearity
assumption in GC [6], nonlinear extensions of GC have been proposed. In particular, GC with kernels
was originally introduced in [7]. The method assumed a particular class of functions and an additive
interaction between them. An alternative kernel-based test in combination with a filtering approach
was later introduced in [8]. In all these studies, the autoregressive (AR) models use kernel-based
regression on the concatenation of the involved variables in input spaces. This approach, however, is
limited as it disregards nonlinear cross-relations between X and Y in Hilbert spaces explicitly. We
here introduce explicit feature maps and corresponding kernel functions that account for nonlinear
cross-relations in kernel space [9].

2 Crosskernel Gaussian processes for Granger Causality

GC first builds univariate and bivariate AutoRegressive (AR) models: (1) yt+1 = aᵀ
t yt + εyt and

(2) yt+1 = aᵀ
t yt + bᵀ

t xt + ε
y|x
t , where yt = [yt, yt−1, . . . , yt−P ]

ᵀ, xt = [xt, xt−1, . . . , xt−Q]
ᵀ,
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and a = [a1, . . . , aP ]
ᵀ and b = [b1, . . . , bQ]

ᵀ are typically estimated by least squares. A GC test is
defined as the ratio of model fitting errors: δx→y = log(V[εyt ]/V[ε

y|x
t ]), where the residual errors

are defined for the unrestricted εyt and restricted εy|xt cases separately, and V represents the variance
operator. Conditional Granger causality traditionally considers incrementing the variable yt by
stacking the variables one conditions to z, that is yt

′ := [yt, zt], and applying the same methodology.
The linear GC formulation can be generalized to the nonlinear case using elements of the theory
of reproducing kernel Hilbert spaces (RKHS) [10]. Let us assume the existence of a Hilbert space
H equipped with an inner product where samples in X are mapped into by means of a feature map
φ : X → H,xi 7→ φ(xi), 1 ≤ i ≤ n. The similarity between the elements in H can be estimated
using its associated dot product 〈·, ·〉H via RKHS, k : X × X → R, such that (x,x′) 7→ k(x,x′).

Stacked kernel. The standard kernel GC (KGC) approach considers a kernel-based AR modeling [8,
7]. The method defines two feature maps φ and ψ to a RKHSH endorsed with reproducing kernels
k and `, where yt and the concatenation zt = [yt,xt] ∈ RP+Q are mapped to, respectively. This
leads to the kernel regression models (1) yt+1 = aᵀ

Hφ(yt) + εyt and (2) yt+1 = bᵀ
Hψ(zt) + ε

y|x
t ,

where now aH ,bH ∈ RH×1. By using the representer’s theorems aH = Φᵀα and bH = Ψᵀβ,
where Φ,Ψ ∈ Rn×H , the AR models can be defined in terms of kernel functions only: yt+1 =

αᵀkt + εyt , and yt+1 = βᵀ`t + ε
y|x
t , respectively, where kt = [k(y1,yt), . . . , k(yn,yt)]

ᵀ and
`t = [`(z1, zt), . . . , `(zn, zt)]

ᵀ contain all evaluations of k and ` at time t. Since data are mapped to
the same Hilbert spaceH, the same kernel function and parameters are used for both k and `.

Summation kernel. Alternatively implicit AR models can be defined in RKHS [7]: yt+1 =

aᵀ
Hφ(yt) + εyt , and yt+1 = aᵀ

Hφ(yt) + bᵀ
Hψ(xt) + ε

y|x
t , which leads to the kernel AR mod-

els yt+1 = αᵀkt+ ε
y
t and yt+1 = αᵀkt+β

ᵀ`t+ ε
y|x
t , where now `t := [`(x1,xt), . . . , `(xn,xt)]

ᵀ.
The summation kernel is more appropriate when large time embeddings P and Q are needed to
capture long-term memory processes, since it avoids constructing large dimensional feature vectors z
by concatenation. However, the cross-information between X and Y is missing.

Explicit cross-kernel. In order to account for cross-correlations in Hilbert space, while alle-
viating the issue of large embeddings in conditional GC setups. we propose to explicitly de-
fine two feature maps: the standard individual map φ and the joint feature mapping ψ for
the second AR model: yt+1 = aᵀ

Hφ(yt) + εyt and yt+1 = bᵀ
Hψ(xt,yt) + ε

y|x
t , where

the joint map is defined by construction as ψ̃(xt,yt) := [A1ϕ(yt),A2ϕ(xt),A3(ϕ(yt) +
ϕ(xt))]

ᵀ, where ϕ is a nonlinear feature map into an RKHS H, and Ai, i = 1, 2, 3, are
three linear transformations from H to Hi. The induced joint kernel function readily becomes:
n((xt,yt), (x

′
t,y
′
t)) = ψ̃(xt,yt)

ᵀψ̃(x′t,y
′
t)

= ϕ(yt)
ᵀR1ϕ(y

′
t) +ϕ(xt)

ᵀR2ϕ(x
′
t) +ϕ(yt)

ᵀR3ϕ(x
′
t) +ϕ(xt)

ᵀR3ϕ(y
′
t)

=n1(yt,y
′
t)+n2(xt,x

′
t)+n3(yt,x

′
t)+n4(xt,y

′
t),

where R1 = Aᵀ
1A1 + Aᵀ

3A3, R2 = Aᵀ
2A2 + Aᵀ

3A3, and R3 = Aᵀ
3A3. The new kernel function

considers cross-terms relations between the time series through kernels n3 and n4. Besides, there is
no need to explicitly use the same kernel function or parameters, and can be convenient to alleviate
the problem of increased dimensionality in conditional GC settings as ours.

We used the previous kernel/covariance in Gaussian Processes (GPs) [11]. The GP modeling of XKGC
assumes that the AR functions fy and fy|x follow n-dimensional Gaussian distributions fy,∼ N (0,K)
and fy|x ∼ N (0,L), and covariances K and L (or respectively N) of the distributions are determined
by a kernel function. A direct sum of covariances is also a covariance so all kernel functions in the
XKGC framework (k, l and n) induce valid GPs. The XKGC allows to advantageously optimize
hyperparameters by Type-II Maximum Likelihood using the marginal likelihood of the observations.
The GP treatment also permits to define a test statistic based on the the evidence. We suggest the GC
criterion for the GP versions as follows:

δGP
x→y = max

θ2

log(p2(fy|X,Y ))−max
θ1

log(p1(fy|Y )),

which represents the difference between log-evidences of the two GP AR models, so we inferX → Y
when the evidence of conditioned model is larger than the evidence of the unconditioned model.

The cross-kernel GC (XKGC) generalizes previous KGC methods and comes with statistical guar-
antees when used in GPs. Owing to the connection between GPs and KRR [12], our GP model
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function class h implicitly uses the squared loss for R̂(h). Let us use an squared exponential kernel,
k(x,x) = 1, and let γ ∈ [0, 1] and β ∈ [γ, 1]. The Rademacher complexity regression minimum
bound for the cross-kernel is:

Rcross(h) ≤ R̂(h) +
8‖h‖2√

n

(√
1 + γ

1 + β
+

3

4

√
log(2/δ)

2

)
,

which follows from the Rademacher complexity for a sum of N kernels Ki can be easily bounded as
R̂(h) =

√
NR̂(hi), i = 1, . . . , N ; M2 = 2(1 + β) and the Tr[K] = 2n(1 + γ) for the cross-kernel.

For the stacked kernel, M2 = 1 and Tr[K] = n, and for the summation M2 = 2 and Tr[K] = 2n,
we obtain Rcross(h) ≤ Rsum(h) = Rstacked. Note that for γ = β, i.e. when X and Y convey
correlated information, the cross-kernel bound converges to the stacked and the summation bounds.
Since γ ≤ β, the cross-kernel bound will be always tighter than the stacked/summation kernel bound.

3 Experimental results

3.1 Data collection and preprocessing

Our study used the database in [13] available at https://sat-ex.ugent.be/, which consists of
climatic data obtained from both satellite observations and in-situ measurements. Variables are
classified into four categories of driving forcings: temperature, precipitation, soil moisture, and
radiation. A total of 18 different products are available, and span over 1981− 2010 on a global scale.
Data were converted to a common monthly temporal resolution and 1o × 1o latitude-longitude of
spatial resolution, and 13072 (pixel) time series were processed, see Appendix.

The application of Granger causality requires stationary data so we removed the trend and periodicity
of all time series. Both are confounding factors that inflate Granger detection. The seasonal cycle
was estimated as the average annual mean over the 30 years, and subtracted from the raw time
series to yield time series of anomalies. Variable selection was also very relevant. We selected one
product per variable. For this, a correlation study was carried out between all products with the
NDVI product. A maximum vote strategy was deployed on the results of Pearson’s, Spearman’s and
Kendall’s correlation coefficients. This yielded a database of four predictor variables (temperature,
precipitation, soil moisture and radiation) corresponding to the anomalies of the four categories. We
performed the study with data from coincident months. Data standardization was applied to all series.
Granger causality was then carried out using one variable at a time and conditioning on the others.
Our target variable is NDVI that accounts for vegetation greenness. We compare the detection ability
and class-specificity of the standard Vector Autoregressive (VAR) model, Gaussian Process (GP) and
the proposed cross-kernel Gaussian Process (XKGP). All 13072 models were cross-validated.

3.2 Detection, robustness and class-specificity

Figure 1: Density of global δ values
between precipitation and NDVI.

Figure 1 shows the global densities of δ values ob-
tained for each regression model in the particular case of
precipitation→greenness (similar results were obtained for
the case of soil moisture). The VAR model shows very poor
detections globally (negative mean and heavy tail skewed over
negative values) which indicates it is unable to find the causal
relation in most of the pixels. The pathological case of standard
GP indicates that the vast majority of decisions are slightly
positive, yet close to zero, and the density is symmetric so
detection is fairly compromised. The proposed XKGP leads to
improved results over both VAR and GPs, with a clear positive
mean and larger variability Granger-causal detections.

The results are analyzed per biome type for precipitation and
soil moisture as driving forces in Table 1. The dominant capabilities of XKGP are obvious in both
forcings (bold faced). Precipitation impacts greenness and XKGP finds stronger detections in shrub-
lands, savannas and herbaceous (highlighted in italics), indicating enhanced detection capabilities in
water-limited biomes. Similar results are observed when considering SM as the driver (conditioned
to temperature, radiation and precipitation too). The lowest δ detections were obtained for forests,
especially for needle-leaf and evergreen forests, as expected.
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Table 1: Mean δ and standard error (×100) per IGBP land cover class and model for precip and SM.

Precipitation Soil moisture

VAR GP XKGP VAR GP XKGP

Needleleaf Forest -6.2 ± 0.4 0.0 ± 0.1 0.3 ± 0.4 -6.2 ± 0.5 0.06 ± 0.04 0.9 ± 0.4
Evergreen Broadleaf Forest -7.4 ± 0.2 -0.1 ± 0.1 0.8 ± 0.3 -7.3 ± 0.3 0.3 ± 0.1 1.9 ± 0.3
Deciduous Broadleaf Forest -7.0 ± 1.0 -0.1 ± 0.1 0.7 ± 0.5 -9.0 ± 1.0 -0.1 ± 0.2 2.0 ± 1.0
Mixed Forest -6.3 ± 0.4 0.0 ± 0.1 1.2 ± 0.4 -6.6 ± 0.4 0.1 ± 0.1 2.8 ± 0.4
Shrublands -4.2 ± 0.3 1.4 ± 0.3 4.1 ± 0.7 -2.7 ± 0.4 2.4 ± 0.3 5.1 ± 0.6
Savannas -3.6 ± 0.6 0.8 ± 0.3 5.9 ± 0.9 -5.3 ± 0.6 0.6 ± 0.3 5.9 ± 0.8
Herbaceous -2.9 ± 0.7 1.7 ± 0.6 6.8 ± 0.9 -3.9 ± 0.4 1.0 ± 0.2 7.1 ± 0.9
Cultivated -5.4 ± 0.4 0.0 ± 0.2 3.2 ± 0.6 -4.3 ± 0.4 0.3 ± 0.1 6.8 ± 0.7

3.3 Global footprints of precipitation and moisture on vegetation

Let us now look at global and regional scales in Fig. 2. The gradient maps show where precipitation
or moisture become more relevant for VAR (left) and GP (right). Overall, one can see many (spurious)
detections of VAR, which cannot cope with the well-known nonlinear processes involved as reported
in [13]. This can be better observed in the regional maps of Africa and Australia, where the GP
model yields sharper and clearer detections spatially. This suggests that the variability of central
Africa, among other areas, obtained through VAR may be an artifact of the model. It is worth noting
that areas detected with high GC impact correspond to those related to El Niño Southern Oscillation
(ENSO) event, which causes droughts in the south-east of Africa and the east coast of Australia.

Results show that Granger-climatic dynamics cause vegetation anomalies over most of the continental
surface, with a greater impact in subtropical regions and mid-latitudes. Water availability is the main
factor driving NDVI anomalies worldwide, finding a great Granger-causal relationship in semi-arid
areas or in areas where a large part of vegetation dynamics responds to rainfall. In general, our
findings highlight a strong dependence of global vegetation on water availability and show the effect
of hydroclimatic anomalies on global vegetation over the studied period. These results suggest that
vegetation is susceptible to follow future trends in water availability, and nonlinear (Granger) causal
methods can capture this and quantify it adequately. These results suggest that vegetation will be
critically influenced by the effect of climate warming on water-limited regions.

Figure 2: Global Granger footprint maps of precipitation and humidity on vegetation using VAR
(left) and GP (right), with zoomed areas over Africa and Australia (bottom).

4 Conclusions

We considered Granger causality and its wide adoption and applicability in Earth sciences. Noting
the main shortcomings of stationarity and linearity, we proposed a kernel-based framework that
generalizes previous linear and kernel GC approaches. The methodology copes with nonlinear
relationships more efficiently and comes with statistical guarantees. The application on assessing
the impact of climate variables on vegetation status and health summarized by vegetation indices
suggested sharper and more robust Granger detection capabilities compared to previous methods.
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Appendix. Data collection and availability

Table 2: Data sets used in the analysis. These data sets are used to construct predictive features for
the non-linear Granger causality framework. The NDVI is used to derive the target variable.

Variable Dataset Spatial resolution Temporal resolution Reference

Temperature

CRU-HR 0.5o monthly Harris et al, 2014 [14]
UDel 0.5o monthly Willmott y Matsuura, 2001 [15]
ISCCP 1o daily Rossow y Duenas, 2004 [16]
ERA-Interim 0.75o 3- hourly Dee et al, 2011 [17]
GISS 2o monthly Hansen et al, 2013 [18]
MLOST 5o monthly Smith et al, 2008 [19]
CFSR-Land 0.5o daily Coccia et al, 2015 [20]

Precipitation

CRU-HR 0.5o monthly Harris et al, 2014 [14]
UDel 0.5o monthly Willmott y Matsuura, 2001 [15]
CPC-U 0.25o daily Xie et al, 2007 [21]
GPCC 0.5o monthly Schneider et al, 2016 [22]
CMAP 2.5o monthly Xie y Arkin, 1997 [23]
GPCP 2.5o monthly Adler et al, 2003 [24]
MSWEP 0.25o 3- hourly Beck et al, 2017 [25]

Soil moisture GLEAM 0.25o daily Miralles et al, 2011 [26]

Radiation SRB 1o 3- hourly Stackhouse et al, 2004 [27]
ERA-Interim 0.75o 3- hourly Dee et al, 2011 [17]

NDVI GIMMS 0.25o monthly Tucker et al, 2005 [28]
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