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Abstract
This study proposes a novel framework for spectral unmixing by using 1D con-
volution kernels and spectral uncertainty. High-level representations are com-
puted from data, and they are further modeled with the Multinomial Mixture
Model to estimate fractions under severe spectral uncertainty. Furthermore, a
new trainable uncertainty term based on a nonlinear neural network model is
introduced in the reconstruction step. All uncertainty models are optimized
by Wasserstein Generative Adversarial Network (WGAN) to improve stability
and capture uncertainty. Experiments are performed on both real and synthetic
datasets. The results validate that the proposed method obtains state-of-the-art
performance, especially for the real datasets compared to the baselines. Project
page at: https://github.com/savasozkan/dscn.

1 Introduction
Spectral data provides comprehensive knowledge about the Earth’s surface in the form of narrow-
band spectra. The limitations of spectral sensors induce pure materials in a scene to be mixed in
different fractions. Indeed, the foremost concern is that pure materials (i.e., endmembers) E =
[e1, e2, ..., eK ] ∈ RD×K and their fractions y = [y1, y2, ..., yK ] ∈ RK have to be estimated blindly
from spectral data x ∈ RD. Furthermore, nonlinear relations and spectral uncertainty are ubiquitous
with severe scattering conditions (see Appendix A).

Even if the mixture of data can be represented with linear/nonlinear formulations, these assumptions
underestimate the solution by considering pure materials as a finite set towards spectral uncertainty.
To overcome the limitations, the mathematical formulation is redefined as follows in (1):

x =

K∑
k=1

(ek + γk)yk + η = Ey + η, s.t.yk ≥ 0,

K∑
k=1

yk = 1 (1)

Here K is the number of endmembers, and D is the spectral bands of a pixel. Also, η ∼ N (0, 1) is
the additive Gaussian noise to account for possible noise sources. Note that γk varies for each pixel
and material. Hence, this term virtually defines the uncertainty of the data.

In the scope of this paper, we will present a novel framework that broadly uses this equation by
computing fractions from pre-computed material signatures (i.e., only fractions are estimated from
data). Specifically, we introduce a multinomial mixture kernel based on a neural network (NN)
structure that obtains the fractions per-pixel. The learnable parameters of this kernel are optimized
with WGAN for the first time. This step achieves theoretically more accurate and stable solutions.

2 Related Work
As expected, the initial methods are based on linear models due to their simplicity. In particular, sum-
to-one and non-negative constraints are conditioned for least-square solutions (2). However, these
models are insufficient to resolve complex cases such as multiple scattering effects and microscopic-
level material mixtures. Hence, bilinear models are used to handle nonlinear scenarios in which
bilinear interactions of linear relations are considered in the models (3; 4).
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Even if the nonlinearity is retained, spectral uncertainty is still discarded in these models due to the
finite set of materials. Distribution-based models represent endmember signatures as they are sampled
from some distributions. In the literature, various distributions are exploited (5; 6). Notice that
these models approximate each fraction to a unimodal distribution. Ultimately, this undermines the
representation capacity as expected. Furthermore, the Gaussian Mixture Model (GMM) is adopted (1).
However, the complexity and assumptions limit the applicability of this method for large-scale data.

Recently, AutoEncoder (AE) network is redefined with additional layers and a spectral angle distance
metric (7) to unmix data that improves robustness for spectral uncertainty. Moreover, (8) uses a
stacked deeper AE network and a robust initialization is achieved by matrix factorization.

3 Proposed Model
We first describe the basics of the proposed method (see Appendix B). The architecture is equivalent
to the standard AE formulation where it encodes the input spectra x to a hidden latent representation
ŷ = Enc(x; θe) and then decodes to recompute the reconstructed version of the original spectra
x̂ = Dec(ŷ; θd) by optimizing the learnable parameters θe and θd with some loss function.

3.1 Encoder Part
The dimensionality of data is one of the drawbacks, especially for unsupervised learning. The main
reason is that a high-dimensional space causes irregular distributions of data in the learning process.
Inevitably, overfitting occurs for the parameters. For additional background, we recommend (9; 10).

For this purpose, high-dimensional input data x is mapped to a low-dimensional space z ∈ RM
where M denotes the dimension of latent representations. Hence, a latent representation is computed
with a set of learnable parameters θc as z = H(x; θc). Observe that M value should be selected
as M >> K to extract sparse representations. In particular, 1D convolution layers are utilized
with batch normalization and sparse activation layers in this function. Since fewer parameters are
optimized, the stack of convolutions boosts the representation capacity with deep hierarchies. Details
can found in Appendix C for the NN structure with input/output relations.

Later, fractions ŷ are estimated by using these latent representations z with a multinomial function
ŷ = G(z; θp) where θp is the learnable parameters. A NN multinomial mixture model is utilized for
this case. As explained, distribution-based methods reproduce materials as they are sampled from
probability distributions. Initial methods employ a unimodal distribution as:

p(y|z) ∼ N (z|µ,Σ) (2)

Fractions y are estimated from z by using a Gaussian distribution where µ and Σ indicate the mean
and covariance matrix, respectively. In fact, this formulation underestimates the solution by fitting
a unimodal distribution for each material. Therefore, Eq. 2 is restored with the Gaussian Mixture
Model (GMM) by computing fractions with the mixture of Gaussian distributions:

p(y|z) ∼ G(z; θp) =
N∑
n=1

αnN (z|µn,Σn) (3)

Here, N is the total number of mixture components by constraining αn ≥ 0 and
∑N
n=1 αn = 1.

Multinomial distributions are adopted in our method because fractions can be overly represented so
that spectral uncertainty is adequately handled. Furthermore, N should be selected as N >> K for
effective representations. To this end, we mimic this approach with a set of NN models. We prefer
to use NN models since the overall framework can be trained in an end-to-end manner. Note that
similar attempts are also made in the literature (11).

If we extend Eq. 3 to separate the term into two learnable parts, this equation is expressed
as G(z; θp) =

∑N
n=1 βngn(z) where gn(z) = exp (−12 (z− µn)TΣ−1n (z− µn)) and βn =

αn

(2π)
N
2 |Σn|

1
2

. As noticed, at least two sets of parameters must be optimized, thus two separate

single-layer subnetworks are employed as vn(z; θp1) = gn(z) and cn(z; θp2) = βn.

To model these terms, the quadratic form of gn(z) is renounced in our formation. Precisely, multivari-
ate Mahalanobis distance is normalized with a sigmoid function to calculate the probabilistic relations.
To this end, the normal distribution resembles a cumulative distribution function. Similarly, βn term
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is calculated with a NN model, and the sum-to-one constraint is retained with softmax activation. In
the end, all subparts of the encoder can be trained with differentiable layers.

3.1.1 Parameter Updates for Multinomial Mixture Kernel
Expectation-Maximization (EM) is the most popular technique to estimate GMM parameters. This
approach guarantees a stable solution by optimizing the negative log-likelihood function. Note that
our loss function exploits the negative log-likelihood term for parameter updates. However, the studies
show that EM approach suffers to achieve a true solution for several reasons, such as the random
initialization of parameters and discontinuity. For further details, we recommend to read (12; 13).

To overcome these limitations, WGAN is employed, which provides several theoretical benefits over
the classical approaches (12). Specifically, Wasserstein distance is continuous and differentiable
almost everywhere. Also, since it has a smooth loss function, the initialization is not critical. Formally,
Wasserstein distance W (p, q) measures the distance between two distributions p and q where they
generate variables as xp and xq . Kantorovich-Rubinstein duality minimizes the distance as:

max‖f‖L ≤ 1
(
Exp [f(xp)]− Exq [f(xq)]

)
(4)

where f(.) is a 1-Lipschitz function. Inspired by the structure of Variational AutoEncoder (VAE) (14),
this duality can be adopted to our formulation in Eqs. 1 and 3 as:

max‖f‖L ≤ 1

(
Ex[f(x)]− Ex̂

[
f(

K∑
k=1

(ek + γk)

N∑
n=1

βngn(z))

])
(5)

Here γk is omitted for the simplicity and βn value is accepted as not random. Note that this
simplification is resolved in the decoder part. In addition, the generated sample from multinomial
components is denoted as x̂. With these observations, the formulation is simplified as:

max‖f‖L ≤ 1

(
Ex[f(x)]−

K∑
k=1

ek

N∑
n=1

βnEx̂[f(gn(z))]

)
(6)

To this end, this notion mathematically proves that WGAN loss can be used for the parameter updates
of gn(z) terms. Furthermore, an additional gradient penalty term is used for stable solutions (15):

Ldisc = E[d(x; θd)]− E[d(x̂; θd)] + λpqE[(‖d(x̃; θd)‖2 − 1)2]. (7)

Here, d(., .) is the discriminative module and it is a 1-Lipschitz function. Furthermore, x̃ is uniformly
sampled data from real x and reconstructed x̂ data. λpq scales the contribution of penalty term that is
set to 10. The details for the NN structure of discriminative module can be found in Appendix C.

3.2 Decoder Part
As stated, in Eq. 1, the formulation defines γk value for spectral uncertainty. However, we omit this
term in Eq. 6 for the simplicity. Here, we remodel this term with extra NN layers.

For this purpose, we add an uncertainty NN model u(ŷ, η; θu) that takes the output of multinomial
mixture kernel and random noise as input. This model computes an additive full-size spectral
signature. Observe that there is random noise η to mimic the spectral uncertainty for different pixels
in the formulation. Lastly, WGAN loss is also used for these parameters. Moreover, we utilize a
refinement NN model u(ŷ; θr) that allows updates and nonlinearity for the precomputed endmembers.

The final output of the decoder part is reformulated by rescaling the contributions of refinement and
uncertainty NN models with λr = 0.05 and λu = 0.1, respectively:

x̂ = Dec(ŷ; θd) = Eŷ + λuu(ŷ, η; θ
u) + λru(ŷ; θ

r) (8)

3.3 Implementation Details
For the parameter updates, spectral angle distance based loss function is utilized (7). WGAN loss is
also used for the parameters at encoder and decoder parts, as explained. Adam stochastic optimizer is
used by setting β1 as 0.7 (16).
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Table 1: RMSE performance for Urban and Jasper datasets. Best results are bold.

Urban Dataset Jasper Dataset
×10−2 DMaxD SCM EndNet DMaxD SCM EndNet
N= 4 15.96 ±2.6 13.26 ±0.6 8.27 ±0.4 12.03 ±0.7 18.10 ±0.9 6.38 ±0.7
N= 8 15.47 ±1.9 13.29 ±0.8 8.05 ±0.5 12.29 ±0.9 18.33 ±1.1 6.61 ±0.7
N= 16 16.32 ±3.2 13.24 ±0.5 8.16 ±0.4 12.12 ±0.7 17.92 ±0.8 6.31 ±0.7
N= 24 16.56 ±2.1 13.23 ±0.8 8.04 ±0.3 12.27 ±0.6 18.03 ±1.1 6.62 ±1.1

w\o EU 34.14 ±0.3 15.91 ±0.3 8.38 ±0.4 14.78 ±0.4 20.26 ±0.4 8.36 ±0.5
w\o WGAN 31.43 ±1.6 15.76 ±1.0 8.52 ±0.5 15.63 ±0.3 19.03 ±0.4 10.15 ±0.5

Table 2: RMSE performance on Urban and Jasper datasets. Best results are bold.
Urban Dataset Jasper Dataset

×10−2 DMaxD SCM EndNet DMaxD SCM EndNet
LMM 31.04 28.00 27.59 15.31 19.78 22.60
GBM 31.04 27.00 27.08 15.98 19.95 21.91
PPNM 36.54 28.17 15.06 12.99 19.78 14.72
MLM 31.43 16.34 9.48 16.59 20.73 8.13
NCM 31.04 28.00 27.51 15.29 19.56 22.42

DSCN++ 15.47 13.23 8.04 12.03 17.92 6.31

4 Experiments
Experiments to compare the performance of the proposed method (DSCN++) with the baseline
techniques are conducted on two real datasets (Urban (17) and Jasper (18) datasets) (see Appendix D
for additional experiments). For this purpose, Linear Mixture Model (LMM) (19), Generalized
Bilinear Model (GBM) (3), Post-Nonlinear Mixing Model (PPNM) (20), Multilinear Mixing Model
(MLM) (19) and Normal Compositional Model (NCM) (21) are selected that are extensively used
nonlinear and distribution-based methods in the literature. Scores of the baselines are reproduced.

Furthermore, Spatial Compositional Model (SCM) (22), Distance-MaxD (DMaxD) (23) and Sparse
AutoEncoder Network (EndNet) (7) are exploited to estimate endmember spectra from the scenes.
Scores are reported in terms of Root Mean Square Error (RMSE) and tests are repeated 20 times.

First, we test all individual steps and parameter configurations for different datasets. For clarity,
EU stands for NN models that correspond to uncertainty and refinement models in the decoder part.
Furthermore, WGAN indicates the use of Wasserstein GAN in parameter optimization. N denotes
the total number of mixture components. Experimental results are reported in Tab. 1. An important
observation is that all these contributions ultimately improve performance. In particular, both WGAN
and EU steps improve the performance of DmaxD methods for both datasets. A similar observation
can be made for SCM on the Urban dataset and Endnet on the Jasper dataset. Lastly, the selection of
N value larger than the material number K ultimately advances the unmixing performance.

Second, we also compare our method with the baselines. Results are demonstrated in Tab. 2. Observe
that no single baseline method can continuously yield accurate results for different scenes, even if
these baselines cover both nonlinear and distribution-based methods. This observation shows the
superiority of our method that can capture both nonlinearity and uncertainty conditions perfectly. Of
course, our method obtains state-of-the-art performance compared to baselines by a large margin.

5 Conclusion
In this paper, we introduce a novel neural network (NN) framework for spectral unmixing. It is
composed of 1D convolutions by addressing spectral uncertainty, which is one of the severe physical
conditions frequently observed in real data. For this purpose, a novel NN layer is proposed to estimate
the fractions per-pixel by leveraging the multinomial mixture kernel. Wasserstein GAN is exploited
for the parameter optimization, which leads to more accurate and stable performance than other loss
functions. The experimental results validate that the proposed method outperforms baselines by a
large margin.
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A Appendix For Spectral Uncertainty

As explained, spectral images can be significantly affected by variations in atmospheric, illumination,
or environmental conditions. Hence, spectral uncertainty ultimately influences the mixture of
materials, especially for real data. Fig. 1 illustrates the pure material samples from real datasets.
Observe that this uncertainty can be tedious for spectral data.

Figure 1: Spectral signatures from Jasper (first row) and Urban (second row) data correspond to two
different pure materials.

B Appendix For Model Flow

The overall flow of the proposed method is illustrated in Fig. 2. Our model takes spectral data x as
input and computes a latent representation z. Later, this representation is modeled with a multinomial
mixture model to estimate fractions y. These fractions are fed to two NN models with the matrix
multiplication of precomputed endmembers in the decoder part. In the end, individual outputs are
summed, and the input is reconstructed.

Figure 2: Flow of the proposed model.
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C Appendix For NN Structures

In our method, two deep NN models are primarily utilized. For the encoder part, a stack of 1D
convolution layers is used to transform high-dimensional spectral data to a low-dimensional space, as
illustrated in Tab. 3. Observe that the order of convolution and normalization layers is modified. This
modification enhances the selectivity of representations by feeding more statistical knowledge to the
convolution layers. Furthermore, Inception module that has multiple kernels of different sizes is also
integrated. Hence, a rich representation from multiple kernel sizes can be computed.

Table 3: The NN Structure of the encoder part. The notation of Conv1D(W,K,S) indicates 1D
convolution whose output dimension, kernel size and stride are W, K and S, respectively. Furthermore,
Nrm and PReLU denote normalization and activation layers. AvgP(K) corresponds to the average
pooling layer with kernel size and stride K.

Index Index of Inputs Operation(s) Output Shape
(1) - Input Spectra D
(2) (1) Conv1D(10, 21, 1) D × 10
(3) (2) PReLU + AvgP(5) + Nrm D/5 × 10
(4) (3) Conv1D(10, 3, 1) D/5 × 10
(5) (3) Conv1D(10, 5, 1) D/5 × 10
(6) (3) Conv1D(10, 7, 1) D/5 × 10
(7) (4),(5),(6) Concat D/5 × 30
(8) (7) PReLU + AvgP(2) + Nrm D/10 × 30
(9) (8) Conv1D(5, 3, 1) D/10 × 10

(10) (9) PReLU + AvgP(2) + Nrm D/20 × 10
(11) (10) Linear(M) + LReLU M

To demonstrate the superiority of this model, Fig. 3 visualizes the distributions of input data and
latent representation transformed by our method. Note that colors are discriminative based on their
real fractions. Our method can blindly achieve more separable space for spectral data.

Figure 3: Data distributions before (first raw) and after (second raw) applying the encoder part.

Moreover, we utilize a deep NN model for the discriminative part of WGAN. This structure is also
given in Tab. 4. In particular, PatchGAN is adopted in our method. Hence, local patches are fed to the
discriminative model than full-dimensional data. Local characteristics (i.e., local spectral uncertainty)
are practically captured.
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Table 4: NN Structure of discriminative network.

Index Index of Inputs Operation(s) Output Shape
(1) - Input Spectra D
(2) (1) Conv1D(5, 21, 5) D/5 × 5
(3) (2) Nrm + PReLU D/5 × 5
(4) (3) Conv1D(10, 5, 2) D/10 × 10
(5) (4) Nrm + PReLU D/10 × 10
(6) (5) Conv1D(20, 5, 2) D/20 × 20
(7) (6) Nrm + PReLU D/20 × 20
(8) (7) Linear(5) D/20 × 5

D Appendix For Additional Experiments on Synthetic Data

Our method is also tested on a synthetic dataset released for the experiments in (1). The dataset
consists of four constituent materials from the ASTER spectral library: limestone, basalt, concrete
and asphalt. For the scene, limestone is set as the background material; the rest is randomly placed to
the image by maintaining the Gaussian-shaped distributions.

Even if synthetic data is conventional to evaluate the methods, it is not suitable to have all adverse
cases exhibited on real data. Hence, it is hard to simulate nonlinearity and spectral uncertainty on the
data. In particular, additive noise is inserted to simulate spectral uncertainty, which cannot reflect
the actual physical conditions. Fig. 4 illustrates samples from two pure materials on this synthetic
dataset. Unlike real data, these samples lead to corrupted signatures.

Experimental results are reported in Tab. 5. If we do not use EU and WGAN steps, the model
achieves the best performance. This result makes sense since spectral uncertainty is simulated as
random additive noise. Hence, WGAN loss eventually learns this noise characteristics instead of the
real spectral uncertainty. This characteristic drastically reduces the performance and undermines the
model. However, as explained, the actual capacity of these steps on real data is obvious.

We also compare our method with baselines. In Tab. 6, these results show that the proposed method
performs better even if the full capacity of model is not used.

Figure 4: Spectra of pixels from the Synthetic dataset.
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Table 5: RMSE performance on synthetic dataset. Best results are bold.

×10−2 DMaxD SCM EndNet
N= 4 8.32 ±1.4 4.47 ±0.7 9.20 ±1.4
N= 8 8.15 ±1.4 4.36 ±0.9 9.14 ±1.0

N= 16 8.18 ±1.0 3.97 ±0.5 9.06 ±1.1
N= 24 7.55 ±1.1 4.42 ±0.6 9.51 ±1.2

w\o EU 5.43 ±0.3 3.81 ±0.9 6.43 ±0.4
w\o WGAN 5.23 ±0.4 3.22 ±1.2 8.88 ±0.3

Table 6: RMSE performance on synthetic dataset. Best results are bold.

×10−2 DMaxD SCM EndNet
LMM 5.17 3.36 17.62
GBM 5.62 3.26 17.39
PPNM 7.66 4.01 9.34
MLM 6.52 3.85 6.71
NCM 4.09 3.85 11.17

DSCN++ 5.23 3.22 6.43
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