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Abstract

We present an active learning pipeline to identify hurricane impacts on coastal
landscapes. Previously unlabeled post-storm images are used in a three component
workflow — first an online interface is used to crowd-source labels for imagery;
second, a convolutional neural network is trained using the labeled images; third,
model predictions are displayed on an interactive map. Both the labeler and
interactive map allow coastal scientists to provide additional labels that will be
used to develop a large labeled dataset, a refined model, and improved hurricane
impact assessments.

1 Introduction

Hurricanes can change coastal landscapes by redistributing large quantities of sediment. For storms
that impact the US, coastal landscape change can be assessed using Emergency Response Imagery col-
lected by the National Geodetic Survey Remote Sensing Division of the US National Oceanographic
and Atmospheric Administration (NOAA; https://storms.ngs.noaa.gov/). This comprehen-
sive aerial imagery is often obtained soon after the storm event, and is typically large both in terms of
the number of individual images per storm and the size of each image. Additionally, this imagery is
unlabeled.

Here we use post-storm imagery to identify hurricane impacts to coastal landscapes along the US
Atlantic and Gulf coasts. Our work combines ideas from two lines of research — first, the use of
crowd sourcing to label the impacts visible in post-storm imagery [Liu et al.,[2014}, Morgan et al.,
2019], and second, the use of machine learning to classify and investigate coastal landscape dynamics
[e.g. Buscombe and Ritchie} 2018, Ridge et al., 2019} |Goldstein et al., 2019]]. We develop an active
learning [e.g., Settles| 201 1] methodology to identify storm impacted landscapes from crowd-labeled
imagery, specifically the binary classification task of identifying the presence of washover deposits
in each image. Washover is a deposit of sediment left on land surfaces after elevated coastal water
levels [e.g.,[Hudock et al., 2014} [Lazarus,2016]. We crowd-source labels for 528 post-storm images
from a two recent hurricanes (Florence and Michael, both 2018) and develop a deep learning model
to detect the presence of washover deposits in a corpus of unlabeled imagery. The model is used
to determine which unlabeled images have the most uncertain label, and pass these images back to
the labeler for human annotation. In addition, a public facing map is used to display geolocated ML
predictions of washover presence in post-storm images and provide an additional route for researchers

Al for Earth Sciences Workshop at NeurIPS 2020.


https://storms.ngs.noaa.gov/

to label imagery. Both the labeler and interactive map provide more training data for future model
improvements.

2 Active Learning Pipeline

The active learning system is broken up into three components: an online labeler, a machine
learning model, and an online interactive map (Figure [T). In the subsections below we discuss
these components sequentially.
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Figure 1: Schematic of the components (boxes) and processes (arrows) involved in the active learning
pipeline.

2.1 Labeler

The labeling interface [Rafique et al.l [2020] serves a stream of images and a given set of questions to
coastal researchers (Figure[2). The labeler is designed to accommodate multiple researchers labeling
a single image (e.g., to ensure correct labeling via consensus, and assess inter-rater reliability), and
is currently hosted on a virtual machine exposed via an URL https://coastalimagelabeler,
science/. An administrator uploads images to be labeled (in this case — from NOAA), develops
questions for the labeler to present to users, assigns sets of images to each user to label, and
periodically exports the labeled data to an open data repository. We developed a bespoke software
package to download and manage the collection of NOAA post-storm imagery

2020ab].

You're labeling now! oy

Figure 2: The labeler interface. Users are presented with a series of images and questions.
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To begin the project, 8 coastal researchers labeled 388 images from Hurricane Florence
2020b]. Each image was labeled until 2 or more researchers agreed on the label. These images
were used to train and test the deep learning model. After this initial task, the labeler now hosts a
changing set of images for all users that are selected based on the results of the deep learning model
(described in the next section).

2.2 Model

The 388 labeled images from Hurricane Florence (179 washover, 209 no washover) were used to
develop a model for the binary classification task of detecting washover presence/absence
and Mohanty|, [2020]]. We use VGG16 [Simonyan and Zisserman| [2014], as it has been used success-
fully for other remote sensing tasks [e.g.,[Sinha et al.,[2019} [Sumbul et al.,[2020]. The base model
was initialized with ImageNet weights, joined to 1 fully connected layer (with 50% dropout), and
then fine tuned with a low learning rate (1e-5). We resize the post-storm images to 416 x 416, use
image augmentation during training (rotation, width and height shift, shear, zoom, horizontal and
vertical flip), and train the model for 200 epochs with an early stopping callback. We use 140 labeled
images from Hurricane Michael (70 washover, 70 no washover), labeled by two coastal scientists,
to test the model. The F1 score for the test set is 0.92, and the confusion matrix can be seen in
Table[T). Visual inspection of results using Grad-cam [Selvaraju et al| 2017]] suggests that the model
is correctly identifying washover deposits (Figure 3).

Table 1: Confusion Matrix for Testing Data (Hurricane Michael)

Obs. Washover Obs. No Washover

Pred. Washover 65 6
Pred. No Washover 5 64

The trained model is then used for inference with 9,700 unlabeled images from Hurricane Florence
(2018), Hurricane Michael (2018), and Hurricane Isaias (2020). For each of the 3 storms we
select the 100 images with the least label certainty — the 100 images with sigmoid output values
closest to the decision value of 0.5. Therefore, the threshold certainty value for each storm is
T, = mazy(abs(0.5 — S(Iy)), where S(I}) is the sigmoid output of image k, and maxy, is the value
of k*" image (where k& = 100 in this case).

Figure 3: Three images with washover deposits from Hurricane Michael, and the associated Grad-cam
heat map from the last model layer.



These 300 images are sent back to the labeler for expert annotation (i.e., an uncertainty sampling
method of active learning). We select 100 images for each storm to balance the burden on labelers
but have enough images to finetune the model further. Once these images have been labeled by a
coastal experts we will retrain the model, perform this active learning step on unlabeled images, and
send a new batch of images to the labeler. See [Goldstein et al.,[2020a] for the most recent labels.

2.3 Map

Each image is geolocated. We visualize the output from the model inference on a map (https:
//uncg-daisy.github.io/StormImpactMap/) to observe the presence/absence of washover de-
posits contextualized with other data — e.g., hurricane tracks https://www.nhc.noaa.gov/data/
tcr/, measured washover extents [Doran et al.,[2019a]], and coastal change forecasts
[2019b]]. Post-storm images with their washover prediction are displayed on the online map as a
marker (Figure[d). This online interactive map is another route for active learning — users can click
the marker and see links to the post-storm image, the Grad-cam overlay on the image obtained from
the last layer of the model, and a button to mark the ML prediction as correctly (or incorrect if no
washover is actually seen). As washovers are a rare class in the dataset, the map aids in finding and
labeling washover imagery and works against future class imbalance in the labeled data. This labeled
imagery from the map interface will be incorporated in future model retraining.
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Figure 4: Examples of the interactive web map. Left: a view of North and South Carolina, US with
the Hurricane Florence track (blue), NOAA post-storm image tiles (stitched and rectified images),
and markers (orange and green circles) denoting the number of model predictions in a given region
(markers are aggregated at this level of map zoom, color refers to the number of markers in the
region). Right: A detailed view of Hurricane Florence storm impacts in North Carolina. Background
imagery is NOAA storm tiles, blue markers are the centroids of individual aerial images. Markers are
clickable and show image name, acquisition date, sigmoid output for the image, links to the image
and Grad-cam overlay, and a button to allow labeling.

3 Future Directions

We have developed a three part active learning pipeline with unlabeled post-storm aerial images. The
labeler, model, and map all work in conjunction toward two overarching goals: 1) to crowd source
the development of a large labeled dataset of storm impacts, and 2) continually improve a model to
detect storm impacts in sandy, low-sloped coastal regions. A successful model can potentially be
used for rapid and automated assessment of post-storm imagery. The pipeline is currently focused on
identifying hurricane washover deposits, but can be expanded to look at other impacts (e.g., damage
to the built environment, flooding, dune erosion, ecosystem impacts, etc.).

This pipeline does not currently incorporate pre-storm imagery, so the model is susceptible to
classifying past storm impacts (i.e., washover from previous storms) and other sandy bowl-shaped
geomorphic features (e.g., dune blowouts) as current washover deposits. Though note that washover
deposits can be long-lived features that are reactivated in subsequent storms [e.g.,|Hosier and Clearyl,
[1977). Future work will focus on testing different model architectures (to allow for active learning
using query-by-committee) and also providing additional data to the learner (i.e., pre-storm imagery,
storm water levels, storm wave heights) that can be used to improve model performance.
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