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Abstract

Species connectivity models play an important role in ecological research and
biodiversity assessment. Unfortunately, simulations of connectivity models are
typically slow, therefore preventing the rapid iteration and updates of models when
evaluating different scenarios.

In this pilot study, we present the proof of concept of utilizing Deep Learning
methodologies as a novel approach in ecology for significantly reducing the predic-
tion rate of species connectivity models.

1 Introduction and motivation

Ecology is the study of interactions between biotic and abiotic factors (Pocock, M., 2019). These
relationships provide insight for proper maintenance of resource and energy allocations for the
conservation of healthy ecosystem biodiversity (Mohanty, S., 2017). Humans benefit from biologically
diverse systems as biodiversity is paramount for the proper functioning of natural ecosystems and the
services they provide mankind (Rapport, D., 1998; Schlapfer, F., 1999; Lohbeck, et al., 2016).

Species connectivity modeling is an integral component of ecological research; applica-
tions include, but are not limited to: assessing biodiversity, species and habitat manage-
ment/restoration/conservation/protection, forecasting the potential effects of environmental and
climate change, predicting invasive species, and testing ecological theories (McRae, et al., 2008;
Rudnik, et al., 2012). Connectivity models apply graph theory, network theory, and/or circuit theory
to quantify connectivity properties with the scale of the network to map species movements (i.e.
connectivity) across spatial dimensions (Rayfield, et al., 2011).

Species connectivity is considered one of the most important indices for biodiversity (Ayram, et
al., 2015; Ng, et al., 2013; UNEP, 2019). It is defined as the strength of possible paths between
points (Newman, M., 2018), or alternatively, the flux of ecological matter between patches (Hillman,
et al., 2018). Unfortunately, predicting species connectivity in response to altered habitat due to
land use/fragmentation and climate change is often difficult because of the lack of data and slow
calculations (Isaac, et al., 2020).
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Figure 1: Sampling points. 150 randomly selected 9x9 sampling points used for model training and
validation

Convolutional Neural Networks (CNNs) are a form of Deep Learning (DL) architecture used on
grid-like structured data. As the name implies, CNNs apply a convolutional operation to identify
patterns or local features from large data sets to obtain information (Goodfellow, et al., 2017).

To address the issues of slow computation of connectivity simulations, we adopted a CNN model
architecture as a new method to quickly and accurately predict species connectivity. The rapid iteration
and updates of the model is particularly useful for providing recommendations to stakeholders and/or
conservationists when evaluating different scenarios.

2 Datasets

The model inputs two spatial resolutions, the Resistance and Origin layers, and returns one spatial
resolution, the Connectivity. Resistance layers are defined as the addition of spatial features that
could determine a species distribution (Lecours-Tessier, et al., 2020). Spatial features can include
topography, human structures, and land composition, all of which has an impact on the energetic
cost required to travel across a patch of land. The Origin layer, for simplicity, is consistent across all
species and represents the likelihood of a species occurring in an area. The output Connectivity layer
is the result of the combination of the Resistance and Origin layers.

All three spatial layers for the black bear, Ursus americanus, dataset covering the Laurentian region of
Quebec, Canada, were taken from Lecours-Tessier et al. (2020) “omnidirectional and omnifunctional
connectivity analyses with a diverse species pool”.

3 Model Setup, Architecture, and Training

3.1 Model Setup

Figure1 presents the one hundred and fifty 9x9 samples that were randomly selected from inside
the data bounds of the original 1255x1206 images. Samples were then partitioned into training,
validation and testing datasets. The validation set was procured from the training set by shuffling
10% of the data. Training and validation layers were then grouped by 32 into minibatches which
were passed through the model during training. Once trained, each 9x9 predicted connectivity images
were concatenated together to produce the final full 1242x1206 connectivity map.
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Figure 2: Model on black bear dataset. A) Black bear connectivity map predicted by the CNN
model. B) Corresponding connectivity map produced by Omniscape. C) Histogram of the model’s
accuracy. D) Difference between predicted values and observed values

3.2 Model Architecture

The model consists of nine layers. The first layer applies a 3x3 convolution filter to a 4D input of
size 9x9x2x32 (where 9x9 is the size of the image; the Resistance and Origin layers make up the
2 channels; and minibatched into groups of 32). The 16-channel output is then activated with the
ReLU activation function. A 2x2 Maxpooling window makes up the second layer. The third, fourth,
fifth, and sixth layers consist of another 3x3 convolutional filter, ReLU activation function, and 2x2
Maxpool window respectively; while the seventh layer flattens the 3D tensor to a 2D one, which
is suitable for dense layer and training. The eighth layer consists of a fully connected (i.e. Dense)
layer that is then reshaped back into a 4D object to match the dimensions of the validation set for
comparison (9x9x1x32).

3.3 Model Training

The model is trained using the ADAM optimizer (set at 0.001) and prints out the model’s performance
against the validation set after each iteration. Performance is calculated using a simple Least Square
Errors (L2 Loss) function divided by the actual value and augmented by adding Gaussian random
noise to images to make it more robust. The training is set for 200 epochs, however will quit out if the
model attains 99.9% accuracy or when the best accuracy has not improved after 5 epochs following a
decrease in learning rate. The parameters for the best run are saved out to a Binary JSON (.BSON)
file and model performance is printed out and visually verified by plotting the heatmap and scatter
plot of the connectivity values versus the model’s output.

4 Results

Figure 2 represents the prediction of the trained model applied on the black bear species data. The
model obtained a 98.49% accuracy after 58 epochs and took 1071.88 seconds while running on a
single CPU. Figure 2A represents the output of the model when applied to the black bear data; it is the
predicted connectivity. Figure 2B is the original connectivity map, which was used for the supervised
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learning and is what the model is trying to predict. This was generated using Omniscape. Figure 2C
is a histogram of the accuracy of the model showing how well the connectivity values predicted by
the model are compared to what we would expect to observe. Figure 2D is the difference between
Figure 2B and 2A, where dark yellow pixels indicate areas of highly overestimated connectivity and
dark blue pixels denote highly underestimated connectivity.

5 Discussion

Omniscape is a program which utilizes a moving window algorithm applied to circuit theory for the
omnidirectional modeling of species connectivity (Tessier, et al., 2020; McRae, et al., 2016). While
Omniscape has established itself as a leading platform for connectivity analysis (Conservation Biology
Institute, 2020), simulations can take up to an hour or more on CPU and approximately 15 minutes
when run on Compute Canada remote clusters (Daphnée Lecours-Tessier, personal communication,
September 24, 2020).

Based on the results, we can conclude that, despite the need for some improvements, the use of a
CNN model was highly successful in minimizing the run time required to predict species connectivity,
all while maintaining high accuracy. The accuracy is considered to be very good as seen in Figure
2C, where most data points lay along the diagonal. The fact that it is not a perfect linear fit is, in fact,
desirable as that indicates the model is not over-fitting.

Limitations of the model include: the ability to generalize between species (results not shown) and
difficulty estimating areas of very high connectivity. The model’s architecture and/or the low number
of sampling points used for training and validation (only 150) can possibly explain these constraints.
Future architectures should investigate the model’s performance when trained and tested on different
species individually. The architecture which has reasonable accuracy on each species should be
the one used when generalizing with multiple species. The small sample size could be another
contributing factor in the model’s poor ability to predict areas of high connectivity. It was chosen to
minimize run time during the creation and optimization of the model.

It was observed, when exploring various model architectures, that a layer ending with a small number
of channels allowed for a better prediction of the low connectivity values, while a layer outputting
a large number of channels improved predictions for high connectivity values. However, when
combining small and large channels, the model performed sub-optimally. Different variations of
channel sizes should be explored more extensively. Although, it is possible that areas of very high
connectivity are not representative of a species’ true dispersal patterns and that the model, in fact,
reduces these artifacts and generates a more realistic species distribution map.

Another minor improvement would be to utilize the properties of a sliding window to smooth out the
connectivity maps and produce less pixelated images. Additionally, running the simulations on GPU
will significantly further reduce computation time and could easily be implemented given Julia’s
ML-specific package, Flux.jl, which includes functions to easily convert models and data to and from
the GPU if available.

6 Conclusion and Broader Impact

Species connectivity modelling is an important component in ecological management. The adoption
of DL techniques to map species connectivity has demonstrated its potential as a successful method in
modelling large scale spatial data. For the first attempt in implementing a CNN to reduce computation
time and accurately predict species connectivity outcomes, our model has shown to be effective,
despite its need for some improvements, as described in the Discussion section.

Decreasing the run time it takes to simulate species connectivity allows for a quicker analysis in
conservation efforts, predicting the potential spread of invasive species, assessing biodiversity and
ecosystem health, and more. Rapid iterations and updates of the model can allow stakeholders, conser-
vationists, epidemiologists, etc. to assess multiple scenarios in a short amount of time. However, the
need for a completely reliable model is integral in the success of using CNNs for rapidly determining
connectivity models. Sacrificing too much accuracy for decreased computation time can lead to
unintended consequences when making critical environmental management decisions. However,
ultimately, the novel implementation of DL methodologies applied in ecology has demonstrated itself

4



as a powerful tool. Further explorations in using CNNs for connectivity models and the ability to
generalize across species should be further investigated.
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