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Abstract

Accurate and localized forecasting of climate variables are important especially
in the face of uncertainty imposed by climate change. However, the data used
for prediction are either incomplete at the local level or inaccurate because the
simulation models do not explicitly consider local contexts and extreme events.
This paper, therefore, attempts to bridge this gap by applying tree-based machine
learning algorithms to correct biases inherent in simulated, reanalysed climate
model against local climate observations in differing tropical climate subsystems
of Indonesia. The new observation datasets were compiled from various weather
stations and agencies across the country. Our results show that regions of tropical
savanna experience greatest bias corrections, followed by the tropical monsoon
and tropical forest. Finally, to account for extreme events, we embed regional
large-scale climate events into these models. In particular, we incorporate ENSO to
account for the residual error of extreme rainfall observations, and have achieved
an improved bias-correction of 36.67%.

1 Introduction

Across the tropical region such as Indonesia, an accurate prediction of climate variables is a prereq-
uisite to robust irrigation planning [16] and forest fire decision-making [22], among many others
[11][19]. However, Indonesia’s heterogeneous climate systems, which can be broadly grouped into
the tropical savanna (Aw), tropical monsoon (Am), and tropical forest (Af) [13], imposes additional
constraints due to their unique underlying climate patterns. In addition, the archipelago which boasts
approximately 1.9 million square kilometers of land area only has less than 200 reliable climate
stations [1]. Therefore, prediction of different climate variables with greater localization and spatial
coverage are urgently needed.

One solution would be to deploy Internet of Things (IoT) weather sensors across critical areas,
including the agricultural regions and areas prone to forest fire or natural hazards [15]. This method,
however, is difficult to implement given the sparsity of internet and reliable electrical coverage [9].
On the other end of the solution spectrum, global climate simulation models are often opted for.
However, they tend to perform worse on tropical climates, like Indonesia, where meteorological
observations are often fluctuating and changing abruptly by the days [21]. Thus, we are proposing a
middle-ground approach where local climate context is incorporated into the global simulation output
to account for or correct these reported biases. This paper will therefore map ERA5 reanalysed,
simulated global output against our 169 stations, 10-year-worth of local climate observations through
different tree-based machine learning ensembles, so that given any area within Indonesia of known
tropical climate subsystem, we can predict its meteorological variables with increased confidence.
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Finally, this paper will explore the potential application of regional large-scale climate events in
making bias-correction of local extremes more robust. In particular, we will observe whether the
incorporation of El Niño/Southern Oscillation (ENSO) measurements will improve the performance
of bias-correcting models for extreme rainfall events.

The machine learning models we are considering in this paper are tree-based, including Random
Forest (RF), Gradient Boosting Decision Tree (GB), and Extreme Gradient Boosting (XGB) as they
have been widely reported to have performed well in predicting fluctuating climate variables as
compared to other algorithms including the support vector machine (SVM) and shallow artificial
neural network (ANN) [6][7][17].

2 Materials and Methods

2.1 Dataset and analysis

2.1.1 Indonesia’s climate observation data

The meteorological data includes daily observations from 169 weather stations located across the
Indonesian archipelago. The 10-year data spanning from January 2010 to December 2019 was
manually collected, cross-checked, and cleaned from diverse agencies that are governed by the
Meteorology, Climatology, and Geophysical Agency of Indonesia (BMKG)[1]. Each station captures
a set of standardized climate variables, which can be grouped into four categories: (1) average,
maximum, and minimum temperature (Tavg, Tmax, Tmin), (2) average relative humidity (RHavg),
(3) average and maximum windspeed (Uavg, Umax), and (4) daily rainfall rate (RR).

In total there are three tropical climate subsystems in the country, namely tropical savanna (Aw),
tropical monsoon (Am), and tropical forest (Af) [13], with a corresponding distribution of 17, 37,
and 115 stations respectively. Figure 1 highlights the spatial distribution of the stations where our
observation datasets are collected.

Figure 1: Spatial distribution of meteorological stations in Indonesia according to the tropical climate
subtypes.

2.1.2 Copernicus ERA5 reanalysis data

ERA5 is the fifth generation European Center for Medium-Range Weather Forecast (ECMWF)
reanalysis for the global climate and weather with data dating back to 1979. ERA5 is produced by
adjusting output from simulation model, which in this case is the CY41R2 of ECMWF’s Integrated
Forecast System, with coarse & proxied meteorological observations. The ERA5 dataset has an
hourly temporal resolution, is covering the earth on a 30km grid (0.25-degree resolution), and resolves
the atmosphere using 137 pressure levels that spans up to a height of 80km above ground [5]. In
order to match the spatio-temporal resolutions of our observation dataset, we aggregate the relevant
ERA5 reanalysed data (RHavg is omitted due to its unavailability in ERA5) into daily variables and
assign these values to stations that are spatially contained within the corresponding grids.
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2.2 Machine learning algorithms for bias-corrected climate variables

Random Forest (RF): The RF model was conceptualized by Breiman (2001) [3] which uses an
idea called bagging to aggregate a collection of decision trees with controlled variance.

Gradient Boosting Decision Tree (GB): The GB model was first proposed by Friedman (2002)
[8] which uses a collection of regression trees as weak classifiers, similar to RF. One major difference,
however, lies in GB’s individual binary tree’s attempt to incorporate residuals from previous trees,
which results in the overall reduction of prediction’s bias.

Extreme Gradient Boosting (XGB): The XGB algorithm was put forward by Chen and Guestrin
(2016) [4] that combines all the predictions made by weak tree learners to develop a stronger learner
through the additive training strategy.

2.3 Experimental setup

Dataset preparation: We are performing an input-output mapping between each of the ERA5
reanlysed variables (Tavg, Tmin, Tmax, Uavg, Umax, and RR) as the input feature and its correspond-
ing observed daily climate data to perform bias correction. Thereafter, for each of the three climate
subsystems, training and testing dataset will be randomly selected on station level with a 80:20 split,
translating to a train:test split of 14:3 stations for Aw, 30:7 stations for Am, and 92:23 stations for Af.

Metrics: We are using root-mean-squared error (RMSE) to evaluate the performance of different
ML algorithms in correcting the biases of simulated and reanalysed ERA5 outputs.

Parameter tuning and model selection: Selecting a fine-tuned ML model requires extensive
search for optimal hyperparameters. This iterative process can be resource-intensive and time-
consuming, and depending on the granularity of each hyperparameter, the search space can grow
exponentially [14]. Hence, to accelerate the speed of parameter tuning and model selection, we will
consider a two-step approach: (1) performing a random grid search with coarse variable granularity,
followed by a (2) complete search with a finer variable-step [2]. Throughout this process, we will
evaluate each of the proposed model’s performance with a k-fold cross validation approach (where
k=5), using RMSE as the error metrics to be minimized.

3 Results and Discussion

3.1 Baseline evaluation between observed and simulated, reanalysed datasets

The evaluation results between data collected across the 169 Indonesian meteorological stations and
ERA5 output are presented in Table 1, aggregated at the three tropical climate subsystems.

Table 1: Baseline evaluation between climate observations and ERA5 simulated, reanlysed output

RMSE

Tropical subsystem Tmin (◦C) Tmax (◦C) Tavg (◦C) Uavg (m/s) Umax (m/s) RR (mm/day)

Savanna (Aw) 1.7 3.2 1.2 4.2 6.2 12.39
Monsoon (Am) 2.4 3.9 1.7 4.3 5.6 14.15
Forest (Af) 2.4 3.5 2.2 2.5 3.9 20.15

Generally, there are greater bias and uncertainties surrounding rainfall and wind speed data, especially
in regions of tropical forest.

3.2 Evaluation of machine learning models in correcting bias in simulated, reanalysed
ERA5 output

The individual model’s performance is evaluated against the corresponding observed weather variable
across different climate subsystems in Indonesia. Table 2 summarizes the evaluation of the best
performing model. For full result, please refer to the table at Appendix A.
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Table 2: Statistical evaluation for the best performing algorithms between bias-corrected ERA5
simulated, analysed output and observed climate data

Savanna (Aw) Monsoon (Am) Forest (Af)

Climate
variable

RMSE
(Best ML)

Error
reduction

(%)
RMSE

(Best ML)

Error
reduction

(%)
RMSE

(Best ML)

Error
reduction

(%)

RR (mm/day) 10.94 (GB) 13.25 12.57 (RF) 11.17 18.79 (RF) 6.75
Tmax (◦C) 1.35 (GB) 57.41 2.23 (RF) 42.67 1.69 (RF) 51.30
Tmin (◦C) 1.43 (GB) 15.38 2.18 (RF) 8.02 1.83 (RF) 23.11
Tavg (◦C) 0.86 (GB) 26.50 1.72 (RF) 0.58 1.63 (RF) 27.23
Umax (m/s) 2.12 (GB) 61.58 4.20 (RF) 24.87 2.00 (GB) 48.59
Uavg (m/s) 1.16 (RF) 63.29 1.11 (GB) 74.07 2.03 (RF) 17.81

Overall, RF and GB models perform better than XGB for every climate variables. The greatest im-
provements are observed in Aw where percentage error reductions can go as high as 63.29%, 61.58%,
and 57.41% for Uavg, Umax, and Tmax respectively. Across the different climate subsystems, RR
boasts the least improvement with error reduction ranging only between 6% in tropical forest and
13% in tropical savanna, primarily due to the extreme fluctuation of observations across months.
Next, we will consider whether incorporating an index of a regional climate oscillation, ENSO, could
account for these residual biases in extreme rainfall events.

3.3 Evaluation of bias-correction models in extreme events using localized climate
knowledge

El Niño–Southern Oscillation (ENSO) is an irregular yet periodic fluctuation of sea surface tempera-
ture and winds over the tropical eastern Pacific Ocean, affecting the climate of much of the tropics,
especially rainfall [21]. We evaluated the performance of our bias-correcting models when NINO3.4
[18], an index commonly used to explain ENSO, is incorporated as an additional feature to explain
for RR. Table 3 summarizes bias-correction performance when compared to observed climate data.

Table 3: Statistical evaluation for the best performing algorithms between bias-corrected ERA5 RR
output after embedding ENSO and its corresponding climate observation

Savanna (Aw) Monsoon (Am) Forest (Af)

Climate
variable

RMSE
(Best ML)

Error
reduction

(%)
RMSE

(Best ML)

Error
reduction

(%)
RMSE

(Best ML)

Error
reduction

(%)

RR (mm/day) 11.17 (GB) 9.85 11.89 (RF) 15.97 12.76 (RF) 36.67

As observed, Am and Af experience improved bias-correction when we consider ENSO phenomenon,
with 15.97% and 36.67% error reductions respectively, as compared to earlier results of 11.17% and
6.75%. Thus, the inclusion of NINA3.4 as an additional feature improves the prediction of extreme
rainfall days, reinforcing the notion that regional large-scale climate conditions have a local-scale
influence on extreme events.

4 Conclusion

This paper presented a novel application of three tree-based machine learning algorithms, including
RF, GB, and XGB, to correct biases in global simulated, reanalysed climate model namely ERA5, by
calibrating it to local meteorological variables (Tmax, Tmin, Tavg, Umax, Uavg, RR), and taking
into account the differing tropical climate subsystems in Indonesia. Overall, RF and GB produce
better results as compared to XGB, especially when correcting for climate variables in regions of
tropical savanna. Regions of tropical forest show more modest results primarily due to their greater
fluctuations and abrupt daily changes, especially for RR. Nonetheless, by incorporating regional large-
scale climate conditions, namely ENSO, we have improved bias-correction especially in extreme
rainfall observations.
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Appendix A: Complete evaluation metrics for each individual ML model

Figure 2: Statistical evaluation for each of the machine learning models against observed weather
variables, with the best performing algorithm (lowest RMSE) highlighted in yellow
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Appendix B: Time-series of bias-corrected ERA5 values against observational climate data

Figure 3: Time-series between bias-corrected ERA5 output and local climate variable for daily
rainfall rate in one of the tropical forest’s station in the year 2019

Figure 4: Time-series between bias-corrected ERA5 output and local climate variable for daily
maximum temperature in one of the tropical forest’s station in the year 2019

Figure 5: Time-series between bias-corrected ERA5 output and local climate variable for daily
minimum temperature in one of the tropical forest’s station in the year 2019
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Figure 6: Time-series between bias-corrected ERA5 output and local climate variable for daily
average temperature in one of the tropical forest’s station in the year 2019

Figure 7: Time-series between bias-corrected ERA5 output and local climate variable for daily
maximum windspeed in one of the tropical forest’s station in the year 2019

Figure 8: Time-series between bias-corrected ERA5 output and local climate variable for daily
average windspeed in one of the tropical forest’s station in the year 2019
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