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Abstract

We present a novel Neural Embedding Spatio-Temporal (NEST) point process
model for spatio-temporal discrete event data and develop an efficient imitation
learning (a type of reinforcement learning) based approach for model fitting. De-
spite the rapid development of one-dimensional temporal point processes for
discrete event data, the study of spatial-temporal aspects of such data is relatively
scarce. Our model captures complex spatio-temporal dependence between discrete
events by carefully design a mixture of heterogeneous Gaussian diffusion kernels,
whose parameters are parameterized by neural networks. This is the key that
our model can capture intricate spatial dependence patterns and yet still lead to
interpretable results as we examine maps of Gaussian diffusion kernel parameters.
Furthermore, the likelihood function under our model enjoys tractable expres-
sion due to Gaussian kernel parameterization. Experiments based on real data
show our method’s good performance relative to the state-of-the-art and the good
interpretability of NEST’s result.

1 Introduction
Spatio-temporal event data has become ubiquitous, emerging from various applications. Studying
generative models for discrete events data has become a hot area in machine learning and statistics: it
reveals of pattern in the data, helps us to understand the data dynamic and information diffusion, as
well as serves as an important step to enable subsequent machine learning tasks. Point process models
(see [17] for an overview) have become a standard choice for generative models of discrete event
data. In particular, the self and mutual exciting processes, also known as the Hawkes processes, are
popular since they can capture past events’ influence on future events over time, space, and networks.
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Despite the rapid development of one-dimensional temporal point processes models for discrete
event data, the study focusing on spatial-temporal aspects of such data is relatively scarce. The
original works of [15, 16] develop the so-called ETAS model, which is still widely used, suggesting an
exponential decaying diffusion kernel function. This model captures the seismic activities’ mechanism
and is convenient to fit, as the kernel function is homogeneous at all locations with the same oval
shape. However, these classical models for spatio-temporal event data (usually statistical models in
nature) tend to make strong parametric assumptions on the conditional intensity.

However, in specific scenarios, the simplifying spatio-temporal model based on ETAS may lack
flexibility. It does not capture the anisotropic spatial influence and cannot capture the complex spatial
dependence structure (see a motivating example in Appendix A). On the other hand, when developing
spatio-temporal models, we typically want to generate some statistical interpretations (e.g., temporal
correlation, spatial correlation), which may not be easily derived from a complete neural network
model. Thus, generative model based on specifying conditional intensity of point process models is a
popular approach. For example, recent works [2, 12, 11, 18, 20, 19, 24] has achieved many successes
in modeling temporal event data (some with marks) which are correlated in time. It remains an open
question on extending this type of approach to include the spatio-temporal point processes. One
challenge is how to address the computational challenge associated with evaluating the log-likelihood
function. This can be intractable for the general model without a carefully crafted structure since it
requires the integration of the conditional intensity function in a continuous spatial and time-space.

In this paper, we present a novel point-process based model for spatio-temporal discrete event
data. Our proposed NEST model tackles flexible representation for complex spatial dependence,
interpretability, and computational efficiency, through meticulously designed neural networks with
embedding capturing spatial information. We generalize the idea of using a Gaussian diffusion kernel
to model spatial correlation by introducing the more flexible heterogeneous mixture of Gaussian
diffusion kernels with shifts, rotations, and non-isotropic shapes. Such a model can still be efficiently
represented using a handful of parameters (compared with a full neural network model such as
convolutional neural networks (CNN) over space). The Gaussian diffusion kernels are parameterized
by neural networks, which allows the kernels to vary continuously over locations. This is the key
that our model can capture intricate spatial dependence patterns and yet still lead to interpretable
results as we examine maps of Gaussian diffusion kernel parameters. As shown in Figure 6 in
Appendix A, our model is able to represent arbitrary diffusion shape at different locations in contrast
to ETAS developed by [14, 15, 16]. Moreover, the likelihood function under our model enjoys
tractable expression due to Gaussian kernel parameterization. Experiments based on real data show
our method’s good performance relative to the state-of-the-art and NEST results’ interpretability.

2 Proposed model
To capture the complex and heterogenous spatial dependence in discrete events, we present a novel
continuous-time and continuous-space point process model (see Appendix B for a basic introduction
in point processes), called the Neural Embedding Spatio-Temporal (NEST) model. The NEST uses
the flexible neural network structure to represent the conditional intensity’s spatial heterogeneity
while retaining interpretability as a semi-parametric statistical model.

Spatially heterogeneous Gaussian diffusion kernel We start by specifying the conditional prob-
ability of the point process model, as it will uniquely specify the joint distribution of a sequence
of events. First, to obtain a similar interpretation as the ETAS model [15], we start from a similar
parametric form for the conditional intensity function

�⇤(t, s) = �0 +
X

j:tj<t

⌫(t, tj , s, sj), (1)

where �0 > 0 is a constant background rate, ⌫ is the kernel function that captures the influence of
the past events Ht. The form of the kernel function ⌫ determines the profile of the spatio-temporal
dependence of events.

We assume the kernel function takes the form of a standard Gaussian diffusion kernel over space
and decays exponential over time. To enhance the spatial expressiveness, we adopt a mixture of
generalized Gaussian diffusion kernels, which is location dependent. Thus, it can capture more
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complicated spatio-nonhomogeneous structure. Given all past events Ht, we define

⌫(t, t0, s, s0) =
KX

k=1

�(k)
s0 · g(t, t0, s, s0|⌃(k)

s0 , µ(k)
s0 ), 8t0 < t, s 2 S, (2)

where {µ(k)
s0 ,⌃(k)

s0 } are the mean and covariance matrix parameters (which we will specify later), K

is the hyper-parameter that defines the number of components of the Gaussian mixture; �(k)
s0 : S ! R

(form specified later) is the weight for the k-th Gaussian component that satisfies
PK

k=1 �(k)
s0 = 1,

8s0 2 S . In the following discussions, we omit the superscript k for the notational simplicity.

Now each Gaussian diffusion kernel is defined as

g(t, t0, s, s0|⌃s0 , µs0) =
Ce��(t�t0)

2⇡
p
|⌃s0 |(t � t0)

· exp

(
�

(s � s0 � µs0)T⌃�1
s0 (s � s0 � µs0)

2(t � t0)

)
, (3)

where � > 0 controls the temporal decay rate, C > 0 is constant to control the magnitude, µs =
[µx(s), µy(s)]T , and ⌃s denote the mean and covariance parameters of the diffusion kernel (which
may vary over time t and “source” locations s 2 S); | · | denotes the determinant of a covariance
matrix; ⌃s is defined as a positive semi-definite matrix

⌃s =

✓
�2
x(s) ⇢(s)�x(s)�y(s)

⇢(s)�x(s)�y(s) �2
y(s)
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Figure 1: An example of kernel used in the NEST model: �x,
�y, ⇢ defines a Gaussian component in the heterogeneous
Gaussian diffusion kernel. The right hand side is the con-
ditional intensity at time t, where two points occurred at
location (x1, y1) and (x2, y2) have triggered the two diffu-
sions (the bright spots) with different shapes.

The parameters µs and ⌃s control the
shift, rotation and shape of each Gaus-
sian component. As shown in Fig-
ure 1, parameters �x(s), �y(s), ⇢(s)
may vary according to the location s
and jointly control the spatial structure
of diffusion at s. The µx(s), µy(s)
define the offset of the center of the
diffusion from the location s. Note
that µx : S ! R, µy : S ! R,
�x : S ! R+, �y : S ! R+,
⇢ : S ! (�1, 1) are the non-linear
mappings that project location s to the
parameters. To capture intricate spa-
tial dependence, we represent such non-linear mappings from location to the parameters of Gaussian
components (defined by (3)) using neural networks. An illustration for our neural network architecture
has been shown in Figure 2, and the detailed description has been elaborated in Appendix C.

!(⋅ |Σ&('), *&(')) +,∗.(⋅)
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Figure 2: An illustration for NEST’s neural network architecture based on a mixture of heterogeneous
Gaussian diffusion kernel. Note that each Gaussian kernel is specified by neural networks, which can
be viewed as summarizing the latent embedding information from data.

Comparison with ETAS model In the standard ETAS model, the kernel function is defined as
a single component whose parameters do not vary over space and time: the kernel function (2)
is simplified to ⌫(t, t0, s, s0) = g(t, t0, s, s0|⌃, 0), where the spatial and temporal parameters are
invariant ⌃ ⌘ diag{�2

x, �
2
y} and µs ⌘ 0. Compared with the standard Gaussian diffusion kernel used

in ETAS, here we introduce additional parameters ⇢, µx, µy that allows the diffusion to shift, rotate,
or stretch in the space. An example of the comparison of the spatio-temporal kernels between ETAS
and NEST models is presented in Figure 6, Appendix A.
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3 Computationally efficient learning
The model parameters can be estimated via maximum likelihood estimate (MLE) since we have the
explicit form of the conditional intensity function. Given a sequence of events a = {a0, a1, . . . , an}

occurred on (0, T ]⇥ S with length n, where ai = (ti, si), the log-likelihood is given by

`(✓) =

 
nX

i=1

�⇤
✓(ti, si)

!
�

Z T

0

Z

S
�⇤
✓(⌧, r)drd⌧. (4)

A crucial step to tackle the computational challenge is to evaluate the integral in (4). Here, we can
obtain a closed-form expression for the likelihood function, using the following proposition. This can
reduce the integral to an analytical form, which can be evaluated directly without numerical integral.
Proposition 1 (Integral of conditional intensity function). Given ordered event times 0 = t0 < t1 <
· · · < tn < tn+1 = T , for i = 0, . . . , n,
Z ti+1

ti

Z

S
�⇤
✓(⌧, r)drd⌧ = �0(ti+1 � ti)|S|+ (1� ✏)

C

�

X

j:tj<ti

Cj

⇣
e��(ti�tj) � e��(ti+1�tj)

⌘
,

where Cj =
PK

k=1 �(k)
sj (�(k)

x (sj)�
(k)
y (sj)/|⌃

(k)
sj |

1/2), and the constant

✏ = max
j:tj<ti+1

R ti+1

ti

R
S g(⌧, tj , r, sj)drd⌧

R ti+1

ti

R
R2 g(⌧, tj , r, sj)drd⌧

.

Since spatially, the kernel g is a Gaussian concentrated around s, when S is chosen sufficiently large,
and most events si locates in the relatively interior of S, we can ignore the marginal effect and ✏
can become a number much smaller than 1. Due to the decreased activity in the region’s edges, the
boundary effect is usually negligible [16]. Define t0 = 0 and tn+1 = T . Since

R T
0

R
S �⇤

✓(⌧, r)drd⌧ =
Pn+1

i=0

R ti+1

ti

R
S �⇤

✓(⌧, r)drd⌧ , using Proposition 1 we can write down the integral in the log-likelihood
function in closed-form expression. Finally, the optimal parameters trained the maximum-likelihood
is thus obtained by ✓̂ = argmax✓ log `(✓). Due to the non-convex nature of this problem, we solve
the problem by stochastic gradient descent. In addition to MLE, we also introduce a more flexible,
imitation learning framework for model fitting as described in Appendix D. The major benefit of this
approach is that it does not rely on the likelihood function model and thus is more robust to model
misspecification.

4 Numerical results

Figure 3: MSE for five methods on two real data sets.

DATA SET RANDOM ETAS NEST+IL NEST+MLE RLPP

ROBBERY (SPACE-TIME) .6323 .1425 .0503 .0649 N/A
SEISMIC (SPACE-TIME) .2645 .0221 .0119 .0153 N/A
ROBBERY (TIME ONLY) .4783 .0857 .0104 .0094 .0183
SEISMIC (TIME ONLY) .1266 .0173 .0045 .0150 .0122

We describe our experimental set-
ting and the real data we have used
in Appendix E. More simulation
studies can be found in Appendix F.
We first quantitatively compare our
NEST+MLE and ETAS by evaluating
Mean Squared Error (MSE) of one-
step-ahead prediction. The results has
been summarized in Figure 3, which shows that both our methods NEST+IL and NEST+MLE outper-
form the state-of-the-art (ETAS) regarding two metrics. In addition, we also show that our method has
a competitive performance even without considering spatial information in contrast to RLPP.

Interpretable conditional intensity To interpret the spatial dependence learned using our model,
we plot the conditional intensity as a heatmap over the space at a specific time frame. For the
state-of-the-art, as shown in Figure 4, we can see that the ETAS (the third column) captured the
general pattern of the conditional intensity over the space, where regions with more events tend to
have higher intensity. Comparing with the result shown in first two columns of Figure 4, our NEST is
able to capture complex spatial pattern at different locations and the shape of the captured diffusion
also differ from application to application. For 911 calls-for-service data, shown in the first row of
Figure 4, the spatial influence of some robbery events diffuse to the surrounding streets and the
community blocks unevenly. For seismic data, shown in the second row of Figure 4, the spatial
influence of some events majorly diffuses along the earthquake fault lines.
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Figure 4: Snapshots of the conditional intensity for two real data sequences (crime events in Atlanta
and seismic events): First and second row show snapshots of the conditional intensity for a series
of robberies in Atlanta and a series of earthquakes in North of California, respectively. First two
columns are generated by NEST+MLE (K = 5) and the third column is generated by ETAS. The color
depth indicate the value of intensity. The region in darker red has higher risk to have next event
happened again.
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A Motivating example

Figure 5: A motivating example of seismic activities: four major earthquakes and their aftershocks
occurred in New Madrid, MO., in the United States since 1811. The blue triangles represent the major
earthquakes, and the dotted circles represent the estimated aftershock regions suggested by ETAS.
The small red dots represent the actual aftershocks caused by the major earthquakes. We can observe
that the locations of actual aftershocks are related to the geologic structure of faults, and the vanilla
ETAS model may not sufficiently capture such complex spatial dependence patterns over time.

Figure 6: To illustrate the difference in the nature of ETAS and proposed NEST models, we show two
series of events sequentially generated in a square region S = [�1,+1]⇥ [�1,+1] within the time
horizon [0, T ] by ETAS and NEST, respectively. The colored balls represent events generated by the
corresponding model. Snapshots were taken at time t1, t2, t3, t4 indicated by the black smaller dots
to show the progression of the spatial intensity �⇤(t, s), s 2 S through time for these two sequences.
The brighter region in the snapshots represents a higher intensity value and is more likely to generate
the next event. As self-exciting spatio-temporal point processes, the occurrence of a new event will
raise the intensity in the local region instantaneously. Then the intensity of this region will decay and
diffuse to the surrounding region over time.

Take earthquake event data as an example, consisting of a sequence of records of seismic activities:
their times and locations. The aftershocks are minor seismic activities that are trigger by the major

7



earthquakes. According to the study1, it has been shown that most of the recent seismic events
occurred in New Madrid, MO, are aftershocks of four earthquakes of magnitude 7.5 in 1811. As
shown in Figure 5, the distribution of the minor seismic activities is in a complex shape (clearly not
“circles" or anisotropic), and the spatial correlation between seismic activities is related to the geologic
structure of faults through the complex physical mechanism and usually exhibits a heterogeneous
conditional intensity. For instance, most aftershocks either occur along the fault plane or along other
faults within the volume affected by the mainshock’s strain. This creates a spatial profile of the
intensity function that we would like to capture through the model, such as the direction and shape of
the intensity function at different locations, to provide useful information to geophysicists’ scientific
study.

B Background

In this section, we revisit the definitions of the spatio-temporal point processes (STPP) and the
commonly used STPP models.

B.1 Spatio-temporal point processes (STPP)

STPP consists of an ordered sequence of events in time and location space. Assume our observation
duration is T and the data is given by {a1, a2, . . . , aN(T )}, which sequences of events ordered in
time. Each ai is a spatio-temporal tuple ai = (ti, si), where ti 2 [0, T ) is the time of the event and
si 2 S ✓ R2 is the associated location of the i-th event. We denote by N(T ) the number of the
events in the sequence between time [0, T ) and in the region S .

The joint distribution of a STPP is completely characterized by its conditional intensity function
�(t, s|Ht). Given the event history Ht = {(ti, si)|ti < t}, the intensity corresponds to the probability
of observing an event in an infinitesimal around (t, s):

�(t, s|Ht) = lim
�t,�s!0

E [N([t, t +�t)⇥B(s,�s))|Ht]

�t⇥ |B(s,�s)|
,

where N(A) is the counting measure of events over the set A ✓ [0, T ) ⇥ S, B(s,�s) denotes a
Euclidean ball centered at s with radius �s, | · | is the Lebesgue measure. Below, for notational
simplicity, we denote the conditional intensity function �(t, s|Ht) as �⇤(t, s).

For instance, a type of self-exciting point processes, Hawkes processes [7] has been widely used
to capture the mutual excitation among temporal events. Assuming that influence from past events
are linearly additive for the current event, the conditional intensity function of a Hawkes process is
defined as

�(t|Ht) = �0 +
X

ti<t

⌫(t� ti),

where �0 � 0 is the background intensity of events, ⌫(·) � 0 is the triggering function that captures
temporal dependencies of the past events. The triggering function can be chosen in advance, for
instance, in the one-dimensional case ⌫(t� ti) = ↵ exp{��(t� ti)}.

B.2 ETAS model

The most commonly used kernel function for spatio-temporal point processes is the standard diffusion
kernel function proposed by the Epidemic Type Aftershock-Sequences (ETAS) modeling [13], which
was originally introduced to model the earthquake events, but now widely used in many other
applications [15, 16, 23, 4, 10, 25]. ETAS model assumes that the influence over time and space
decouples, and the influence decays exponentially over time, and over space decay only depends on
distance (thus, it is a spherical model). Thus, ETAS model does not capture the anisotropic shape of
kernel. This is a simplification and may not capture complex spatial dependence. ETAS model can
also deal with scalar-valued marks (e.g., the magnitude of earthquakes), which we will not discuss
here while focusing on capturing spatio-temporal interactions. One of the reasons that ETAS is a
popular model is due to its interpretability.

1https://www.nature.com/news/2009/091104/full/news.2009.1062.html
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C Deep neural network representation

Recall that parameters in each Gaussian component are determined by a set of non-linear mappings
{⇢(s),�x(s),�y(s), µx(s), µy(s)}. We capture these non-linear spatial dependencies using a deep
neural network through a latent embedding, which we explain below.

Assume the spatial structure at one location s is summarized by an latent embedding vector h(s) 2 Rd,
where d is the dimension of the embedding. The parameters of a Gaussian component at location
s can be represented by a single-layer neural network where the input of the network is the latent
embedding h(s). This layer is specified as follows. The mean parameters are specified by

µx(s) = Cx ·
�
sigm(h(s)TWµx + bµx)� 1/2

�
,

µy(s) = Cy ·
�
sigm(h(s)TWµy + bµy )� 1/2

�
,

where Cx, Cy are preset constants that control the shift of the center of Gaussian components from
location s, sigm(x) = 1/(1 + e�x) is the sigmoid function which gives an output in the range [0, 1].
The variance and the correlation parameters are specified by

�x(s) = softplus(h(s)TW�x + b�x),

�y(s) = softplus(h(s)TW�y + b�y ),

⇢(s) = 2 · sigm(h(s)TW⇢ + b⇢)� 1,

where softplus = log(1+ex) is a smooth approximation of the ReLU function. The parameters in the
network ✓w = {W�x , W�y , Wµx , Wµy , W⇢} and ✓b = {b�x , b�y , bµx , bµy , b⇢} are weight-vectors
and biases in the output layer of the Gaussian component. Note that we omitted the superscript k of
each parameter in the discussion above for the notational simplicity, but it should be understood that
each Gaussian component will have its own set of parameters. Finally, the weight of each component
is given by �(k)s , which is defined through the soft-max function

�(k)s = eh(s)T W (k)
�

. KX

=1

eh(s)T W ()
� .

where W (k)
� 2 Rd is a weight vector to be learned. The latent embedding h(s) is characterized by

another neural network defined as h(s) =  (s|✓h), where  (·) : R2
! Rd is a fully-connected

multi-layer neural network function taking spatial location s as input, ✓h contains the parameters in
this neural network. In our experiments later, we typically use three-layer neural networks where the
width of each layer is 64.

In summary, the NEST with heterogeneous Gaussian mixture diffusion kernel is jointly parameterized
by ✓ = {�, ✓h, {✓(k)w , ✓(k)b }k=1,...,K}. The architecture is summarized in Figure 2. In the following,
we denote the conditional intensity as �⇤✓(s, t) defined in (1), to make the dependence on the parameter
more explicit. Note that the Gaussian diffusion kernels’s parameters vary continuously over location,
and are represented by flexible neural networks; this is the key that our model can capture complex
spatial dependence patterns.

D Imitation learning approach

We now present a more flexible, imitation learning framework for model fitting. The major benefit of
this approach is that it does not rely on the likelihood function model and thus is more robust to model
misspecification. The model’s performance is evaluated by the maximum mean discrepancy (MMD)
statistic, which is a non-parametric metric that measures the divergence between two empirical
distributions.

The setting of imitation learning is as follows. Assume a learner takes actions a := (t, s) 2 [0, T )⇥S

sequentially in an environment according to certain policy, and the environment gives feedbacks
(using a reward function) to the learner via observing the discrepancy between the learner actions and
the demonstrations (training data) provided by an expert. In our setting, both the learner’s actions and
the demonstrations are over continuous-time and continuous space, which is a distinct feature of our
problem.

9



D.1 Policy parameterization

Our desired learner policy is a probability density function of possible actions given the history Ht.
We define such function as ⇡(t, s) : [0, T )⇥ S ! [0, 1], which assigns a probability to the next event
at any possible location and time. Let the last event time before T be tn, and thus the next possible
event is denoted as (tn+1, sn+1). The definition of the policy is

⇡(t, s) = P((tn+1, sn+1) 2 [t, t + dt)⇥B(s,�s)|Ht).

We will show that the policy can be explicitly related to the the conditional intensity function of the
point process.
Lemma 1. A spatial temporal point process which generate new samples according to ⇡(t, s) has
the corresponding conditional intensity function

�⇤✓(t, s) =
⇡(t, s)

1�
R t
0

R
S ⇡(⌧, r)d⌧dr

. (5)

From Lemma 1, we can obtain the learner policy as the following proposition:
Proposition 2 (Learner policy related to conditional intensity). Given the conditional intensity
function �⇤✓(t, s), the learner policy of a STPP on [0, T )⇥ S is given by

⇡✓(t, s) = �⇤✓(t, s) · exp

⇢
�

Z t

tn

Z

S
�⇤✓(⌧, r)d⌧dr

�
.

Thus, this naturally gives us a policy parameterization in a principled fashion: the learner policy ⇡✓
is parameterized by ✓ based on the proposed heterogeneous Gaussian mixture diffusion kernel in
Section 2. Note that using Proposition 1, which gives an explicit formula for the integral required
in the exponent, the policy can be exactly evaluated even a deep neural network is included in the
model.

D.2 Imitation learning objective

Now assume the training data is generated by an expert policy ⇡E , where the subscript E denotes
“expert”. Given a reward function r(·), the goal is to find an optimal policy that maximize the expected
reward

max
✓

J(✓) := Ea⇠⇡✓

hXna

i=1
r(ai)

i
, (6)

where a = {a1, . . . , an↵} is one sampled roll-out from policy ⇡✓. Note that na can be different for
different roll-out samples.

Learner

!"∗

$%Likelihood

Expert

$E

{'(}
Sampling 
& Thining

Model update

{*(}

(a) Maximum likelihood estimation (MLE) for NEST

(b) Imitation learning (IL) for NEST

Figure 7: Comparison between the maximum likelihood and the imitation learning approaches. The
main difference is that the MLE measure the “likelihood” of the data under a model and thus can be
more susceptible to model misspecification, whereas our IL approach measures the actual divergence
between the training data and the sequence generated from the model using MMD statistic without
relying on model assumptions.
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D.3 Reward function

Consider the minimax formulation of imitation learning, which chooses the worst-case reward
function that will give the maximum divergence between the rewards earned by the expert policy and
the best learner policy:

max
r2F

 
E✏⇠⇡E

"
neX

i=1

r(ei)

#
� max

⇡✓2G
E↵⇠⇡✓

"
naX

i=1

r(ai)

#!
,

where G is the family of all candidate policies ⇡✓ and F is the family class for reward function r in
reproducing kernel Hilbert space (RKHS).

We adopt a data-driven approach to solve the optimization problem and find the worst-case reward.
This is related to inverse reinforcement learning; we borrow the idea of MMD reward in [8, 6, 3, 11]
and generalize it from a simple one-dimensional temporal point process to the more complex spatio-
temporal setting. Suppose we are given training samples {ej}, j = 1, 2, . . . , ME , which are the
demonstrations provided by the expert ⇡E , where each ej = {e(j)0 , e(j)1 , . . . , e(j)nj } denotes a single
demonstration. Also, we are given samples generated by the learner: let the trajectories generated by
the learner ⇡✓ denoted by {aj}, j = 1, 2, . . . , ML, where each trajectory aj = {a(j)

0 , a(j)
1 , . . . , a(j)

nj }

denotes a single action trajectory. We will discuss how to generate samples in the following sub-
section.

Using a similar argument as proving Theorem 1 in [11] and based on kernel embedding, we can
obtain analytical expression for the worst-case reward function based on samples, which is given by

r̂(a) /
1

ME

MEX

j=1

njX

i=1

k(e(j)i , a)�
1

ML

MLX

k=1

nkX

l=1

k(a(k)
l , a). (7)

where k(·, ·) is a reproducing kernel Hilbert space (RKHS) kernel. Here we use Gaussian kernel
function, which achieves good experimental results in both synthetic data and real data.

Using samples generated from learner policy, the gradient of J(✓) with respect to ✓ can be computed
by using policy gradient with variance reduction [11],

r✓J(✓) ⇡
1

ME

MEX

j=1

" njX

i=1

(r✓ log ⇡✓(ai) · r̂(ai))

#
.

The gradient of policyr✓ log ⇡✓(ai) can be computed analytically in closed-form, since it is specified
by the conditional intensity in Proposition 2, and the conditional intensity is fully specified by the
neural networks architecture of NEST as we discussed in the Section 2.

D.4 Sampling from STPP using thinning algorithm

An important step in the imitation learning approach is to generate samples from our proposed model,
i.e., a ⇠ ⇡✓, given the history Ht. Here, we develop an efficient sampling strategy to achieve good
computational efficiency. We need to sample a point tuple a = (t, s) according to the conditional
intensity defined by (1). A default way to simulate point processes is to use the thinning algorithm
[5, 1]. However, the vanilla thinning algorithm suffers from low sampling efficiency as it needs to
sample in the space |S| ⇥ [0, T ) uniformly with the upper limit of the conditional intensity �̄ and
only very few of candidate points will be retained in the end. In particular, given the parameter ✓, the
procedure’s computing complexity increases exponentially with the size of the sampling space. To
improve sampling efficiency, we propose an efficient thinning algorithm summarized in Algorithm 1.
The “proposal” density is a non-homogeneous STPP, whose intensity function is defined from the
previous iterations. This analogous to the idea of importance sampling [14].

E Experimental settings

E.1 Baselines and evaluation metrics

In this section, we compare our proposed Neural Embedding Spatio-Temporal (NEST) with a bench-
mark and several state-of-the-art methods in the field. These include (1) Random uniform that
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Algorithm 1: Efficient thinning algorithm for STPP
input ✓,�0,�, T,S;
output A set of events ↵ ordered by time.;
Initialize ↵ = ;, t = 0, s ⇠ uniform(S).;
while t < T do

u, D ⇠ uniform(0, 1); s ⇠ uniform(S);
�̄ �0 +

P
(⌧,r)2↵ ⌫(t, ⌧, sn, r);

t t� lnu/�̄;
Compute �⇤✓(t, s) from (5);
if D�̄ > �⇤✓(t, s) then

↵ ↵ [ {(t, s)}; sn  s;
end

end

randomly makes actions in the action space; (2) Epidemic Type Aftershock-Sequences (ETAS) with
standard diffusion kernel, which is currently the most widely used approach in spatio-temporal event
data modeling. For ETAS, the parameters are estimated by maximum likelihood estimate (MLE); (3)
reinforcement learning point processes model (RLPP) [11] is for modeling temporal point process
only, which cannot be easily generalized to spatio-temporal models. (4) NEST+IL is our approach
using imitation learning; (5) NEST+MLE is our approach where the parameters are estimated by MLE.

To evaluate the performance of algorithms (i.e., various generative models), we adopt two performance
metrics: (1) the average Mean Square Error (MSE) of the one-step ahead prediction (which, thus, is a
prediction performance metric). The one-step ahead prediction is obtained by performing Algorithm 1
given the current intensity �⇤(t, s) and the past events; (2) the maximum mean discrepancy (MMD)
metric between the real observed sequences and the generated sequences from the models, as specified
in Section D (thus, this measures how good the generative model give a specific training method).
For synthetic data, we also compare the recovered parameters against the true parameters, which is
used for constructing the generator and generating the corresponding synthetic data.

E.2 Real data description

We test our approaches on two real-world data sets: Atlanta 911 calls-for-services data (provide by
the Atlanta Police Department to us under a data agreement) and Northern California seismic data [9].
For the ease of comparison, we normalize the space region of both data sets to the same space T ⇥ S

where T = (0, 10] and S = [�1, 1]⇥ [�1, 1]. The detailed description of two data sets is as follows.

Atlanta 911 calls-for-service data. The 911 calls-for-service data in Atlanta from the end of 2015 to
2017 is provided by the Atlanta Police Department (this data set has been previously used to validate
the crime linkage detection algorithm [21, 22, 23]). We extract 7,831 reported robbery from the data
set since robbers usually follow particular modus operandi (M.O.), where criminal spots and times
tend to have a causal relationship with each other. Each robbery report is associated with the time
(accurate to the second) and the geolocation (latitude and longitude) indicating when and where the
robbery occurred. We consider each series of robbery as a sequence.

Northern California seismic data. The Northern California Earthquake Data Center (NCEDC)
provides public time series data [9] that comes from broadband, short period, strong motion seismic
sensors, and GPS, and other geophysical sensors. We extract 16,401 seismic records that have a
magnitude larger than 3.0 from 1978 to 2018 in Northern California and partition the data into
multiple sequences every quarter. To test our model, we only take advantage of time and geolocation
in the record.

F Simulation study

We evaluate our method on two synthetic data sets. These two data sets are generated by NEST with
artificial parameters shown in Figure 8a and 8b, respectively, where parameters in Figure 8a are
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linearly related to their spatial locations and parameters in Figure 8b are non-linearly related their
spatial locations. In both data sets, there are 5,000 sequences with an average length of 191, and
80%, 20% sequences are used for training and testing. The time and location of events have been
normalized to T = 10 and S = [�1,+1] ⇥ [�1,+1]. As an ablation study, we specify the model
with only one Gaussian component and three hidden layers in the neural network. Each layer contains
64 neurons, and randomly takes 40 sequences as a batch. The model is trained by both MLE, and IL
approaches.
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Figure 8: Simulation results on two sets of synthetic data. (8a): The ground truth of the Gaussian
parameter �x,�y, ⇢ in the synthetic data set 1; (8b): The ground truth of the Gaussian parameter
�x,�y, ⇢ in the synthetic data set 2; (8c): The recovered Gaussian parameters using the synthetic data
set 1; (8d): The recovered Gaussian parameters using the synthetic data set 2.

Table 1: MSE for five methods on two synthetic data sets.

DATA SET RANDOM ETAS NEST+IL NEST+MLE RLPP

SYNTHETIC DATA 1 (SPACE-TIME) .2781 .0433 .0075 .0134 N/A
SYNTHETIC DATA 2 (SPACE-TIME) .3327 .0512 .0124 .0321 N/A
SYNTHETIC DATA 1 (TIME-ONLY) .1734 .0135 .0021 .0048 .0146
SYNTHETIC DATA 2 (TIME-ONLY) .2147 .0323 .0036 .0055 .0341

We report the average MSE of the one-step-ahead prediction in Figure 1 for each method on both
two synthetic datasets. As we can see from the table, our model (based on different training
methods)(NEST+ML and NEXT+IL) outperform other methods on two synthetic data sets in terms of
prediction error. Since the ground truth of the model is known, we also visualize the parameters in
the Gaussian component in comparison to the true parameters. Figure 8a and Figure 8a show the true
parameters that are used to construct the generators and generate two synthetic data sets. We fit our
NEST model using these two synthetic data sets separately and obtain the corresponding parameters.
Figure 8c and Figure 8d show the recovered parameters learned from two synthetic data sets. It
shows that the spatial distribution of the recovered parameters is similar to the true parameters. It
also confirms that our model can capture the underlying spatial pattern in both linear and non-linear
parameter distributions.
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