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ABSTRACT

We apply an invertible neural network (INN) for E3SM land model (ELM) cal-
ibration and simulation with eight parameters at the Missouri Ozark AmeriFlux
forest site. INN provides bijective (two-way) mappings between inputs and out-
puts, thus it can solve probabilistic inverse problems and forward approximations
simultaneously. We demonstrate INN’s inverse and forward capability in both
synthetic and real-data applications. Results indicate that INN produces accurate
parameter posterior distributions similar to Markov Chain Monte Carlo sampling
and it generates model outputs close to the ELM simulations. Additionally, both
the inverse and forward evaluations in INN are computationally efficient which
allows for rapid integration of observations for parameter estimation and fast model
predictions.

1 INTRODUCTION AND MOTIVATION

The Energy Exascale Earth System Model (E3SM) [1; 2], Land Model (ELM) simulates terrestrial
water, energy, and biogeochemical processes in terrestrial surfaces and is an important tool for
improving our understanding of ecosystem responses to climate change. ELM involves a large
number of parameters [3], many of which are not measured and default values are usually used either
from surveys of broadly defined plant functional types or by benchmarking the model simulations
against global data sets. However, due to differences in climate, soil, and vegetation types between
sites, assigning uniform values to these site specific parameters may result in inaccurate model
simulations at a single site showing large model discrepancy from site observations. Thus, this
requires model calibration against site observations and performing parameter estimation at every
site to improve model’s predictability globally. Additionally, the parameter estimation should be
computationally efficient, so we can quickly integrate multiple sources of observation streams and
streamline this process to every sites.

However, calibrating ELM is challenging because of strong nonlinearity, poorly constrained model
parameters, and significant computational costs [4]. The strong model nonlinearity and unconstrained
parameters require quantifying uncertainties in parameter estimates to interpret inversion results
correctly. Unfortunately, estimating uncertainty in nonlinear inverse problems is computationally
expensive. For example, a Markov chain Monte Carlo (MCMC) sampling typically requires hundreds
of thousands, or even millions of model evaluations to get convergence and these model simulations
cannot be done fully in parallel [5; 6; 7]. To reduce the computational costs, surrogate modeling has
been integrated into MCMC sampling [8; 9; 10; 11]. A surrogate model, which can be constructed
using polynomials or neural networks, approximates the actual simulation model based on paired
samples of model inputs and outputs and then replaces the simulation model in the MCMC calculation
to reduce the single model evaluation cost thus the total sampling cost. This two-step model
calibration approach, i.e., first building a surrogate of the forward model and then performing the
inverse modeling on the surrogate for parameter estimation, has obtained increasing popularity in the
earth science community. The limitation is that we need to build a globally accurate surrogate in the
entire parameter space and whenever we change the likelihood function, either due to the change of
observations or the likelihood formulation, we need to rerun the MCMC. This prevents the two-step
approach from rapid integration of site observations where data are continuously collected and from
the ELM calibration at every single sites where many similar inversions must be performed.
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In this study, we present an invertible neural network (INN) which solves probabilistic inverse
problems and forward approximations simultaneously [12; 13]. INN provides bijective (two-way)
mappings <> d between model inputs x (i.e., model parameters) and outputs d (e.g., system states
or flux variables). The network is invertible by construction, thus providing a unique opportunity
where we can train it on the well-understood forward process * — d and get the inverse d — « for
free by backward evaluation. Additionally, both forward and inverse mapping in INN are efficiently
computable, and both mappings have a tractable Jacobian, which allows explicit computation of
posterior probabilities. We demonstrate an application of INN by calibrating eight parameters in the
ELM against five years of measurements of latent heat fluxes at the Missouri Ozark AmeriFlux forest
site. We evaluate INN’s calibration results by comparing its estimated parameter distributions with
the MCMC sampling and assess its forward approximations in comparison with the ELM simulations.

The main contributions of this work are:

1. We present an invertible neural network to efficiently address both the inverse and forward
modeling problems simultaneously.

2. We apply INN for ELM inverse model calibration and forward simulation on both synthetic and
real observation data.

3. In inverse calibration, INN produces parameter posterior distributions similar to the MCMC
sampling; in forward evaluation, INN generates model outputs close to the ELM simulations.

4. After training, INN solves both inverse and forward problems in seconds, and thus can be used for
accurate parameter estimation and prediction in scenarios where rapid evaluations are required.

2 INVERTIBLE NEURAL NETWORKS

INN is a class of networks that provide bijective mappings between inputs and outputs (the INN
structure is presented in Appendix A). When evaluating INN in the forward direction, we obtain a
solution of the forward modeling, and when INN is evaluated in the reverse direction, it produces the
solution of the inverse problem. To consider the nonunique solutions of parameters a, additional latent
variables z are introduced to augment the original model outputs d, such that the pair comprising one
x and the augmented vector [d, z] is unique and the relationship between x and [d, z] is one-to-one.
Then, we can use INN to learn the bijective mapping « <> [d, z] and solve both the forward and
inverse problems simultaneously. According to [12], we train INN to approximate the forward process
and meanwhile ensure the latent variables z predicted by the network are distributed according to
a chosen distribution, e.g., a Gaussian distribution (theoretically any distributions can be used as
proved in [12]). Then the solution of the inverse problem, i.e., the parameter posterior distributions
p(x|dobs ), can be obtained thereafter by evaluating the network backwards given observations dops
with z randomly sampled from its chosen distribution. In implementation, we first draw many
samples of [d,ps, z] where z is generated from the chosen Gaussian distribution and ds is held
constant. Next, we evaluate the trained INN backwards for these samples, which will transform the
distribution p(z) to the parameter posterior distribution p(i|d,ps). This backward evaluation takes
about 3 seconds in this study.

The loss function includes three components: the model output loss £4 which penalizes deviations
between model outputs d and network predictions fq(x), the loss for latent variables £, which
penalizes the mismatch between the joint distribution of network outputs ¢(d, z) and the product of
their marginal distributions p(d)p(z), and the loss on the inputs £, which matches the distribution
of backward predictions ¢(x) against the input prior distribution p(x). We use mean squared loss
for L4, and Maximum Mean Discrepancy (MMD) [14] for £, and L, to measure the difference
between two distributions. In summary, the total loss £ of INN is represented as

L = oE[(d ~ fa(z))’] + SMMD[q(d. 2), p(d)p(2)] + YMMDIg(z), p()], (D
where ¢(d, z) = p(x)/|J(x) and J(x) is the Jacobian of the forward transform embodied in the
network; ¢(x) = p(d)p(z)/|J(d, z)| and J(d, z) is the Jacobian of the backward transform. In
training, the hyperparameters «, 3, and -y are selected manually to give a balance between the three
losses. In this study we observe that the performance of INN is not very sensitive to the three
hyperparameter values. After training, INN produces parameter posterior distributions p(x|d,ps) for
a given observation d,s, as well as an approximation function f that maps model parameters to its
corresponding outputs, which can serve as a fast-to-evaluate surrogate of the forward model.
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3 E3SM LAND MODEL CALIBRATION PROBLEM

The E3SM land model (ELM) simulations are performed at the Missouri Ozark AmeriFlux site [15]
that has been collecting eddy covariance data since 2004 [16]. We use the annual average latent
heat fluxes (LH) collected in the site from 2006 to 2010 (i.e., five model output quantities) for ELM
parameter estimation. ELM involves more than 60 parameters. According to the sensitivity analysis
of [3], seven model parameters were responsible for more than 80% of the variation in the LH.
These seven parameters are a factor controlling rooting distribution with depth (rootb_par [0.5,4.5]),
the specific leaf area at the top of the canopy (slatop [0.01, 0.06]), the fraction of leaf nitrogen
in RuBisCO (finr [0.1, 0.4]), the fine root carbon:nitrogen ratio (frootcn [25, 65]), the fine root to
leaf allocation ratio (froot_leaf [0.3, 1.8]), the base rate of maintenance respiration (br_mr [1.5e-6,
4.5e-6]), and the critical day length to initiate autumn senescence (crit_dayl [35000, 55000]). Along
with one additional parameter crit_onset_gdd [500, 1300], a total of eight parameters are estimated.
The parameter crit_onset_gdd, which represents the number of accumulated growing degree days
needed to initiate spring leaf-out, was previously encoded as a constant in ELM. However, given
a recent analysis highlighting the importance of phenology for carbon uptake [17], we think it is
important to include this parameter for calibration. The ranges of the eight parameters are listed
above after the parameter names.

In this study, we use INN to learn the relationship between the eight parameters and the five model
outputs of LH. We have 1000 pairs of ELM simulation samples. We use the 800 samples for INN
training and the remaining 200 samples as validation set for hyperparameters turning (details in
Appendix B). The training process takes about 10 mins. After training, we can use INN to perform
forward simulation given a parameter value, and estimate parameter posterior distributions given
the observations. Both forward and inverse evaluations take seconds. To evaluate the INN’s inverse
modeling performance, we compare its estimated parameter probability density functions (PDFs)
with MCMC results. For the MCMC simulation, we take the two-step approach, first building a
surrogate model based on the 1000 prior samples and then perform the MCMC on the surrogate. The
widely applied EMCEE algorithm [18] is employed to draw MCMC samples. It uses 16 chains, each
of which contains 50000 samples including a burn-in period of 40000 samples. The burn-in samples
are discarded and every 100*" of the remaining 10000 samples in each chain are included in the final
set (i.e., 1600 samples) for the parameter posteriors approximation. In this two-step approach, after
building the surrogate model, the MCMC sampling takes about 5 hours.

4 RESULTS

We apply INN to both synthetic and real-data observations. In the synthetic case, we pick one ELM-
simulated LH sample from the validation set as a synthetic observation and use the corresponding
parameter sample as the synthetic “truth” to evaluate the INN’s inverse modeling accuracy. In the
real-data case, the parameters are calibrated using the real observations from the forest site. We first
evaluate INN’s inverse capability in the synthetic case and then discuss the results in the real-data
case; lastly we assess INN’s performance in forward model approximations. We use the normalized
root mean squared error (NRMSE) and coefficient of determination (R2) for performance evaluation;
both metrics are defined in Appendix C.

Figure 1 presents the parameter estimation results of both INN and MCMC in the synthetic case.
Overall, INN and MCMC produce comparable results in terms of both point estimation accuracy
quantified by the maximum a posteriori (MAP) and the uncertainty quantification (UQ) assessed
using the posterior PDFs. The NRMSE between the MAP estimates and the synthetic “truth” over the
eight parameters is 0.002 for INN and 0.019 for MCMC, where INN shows a better point estimation.
Figure 1 also indicates that the MAP estimates of INN are closer to the “truth” than the MCMC
results. Additionally, the posterior PDFs estimated by INN and MCMC have similar shapes both
for marginal distributions and joint distributions. These estimated posteriors are consistent with our
domain knowledge. For example, parameter rootb_par is sensitive to LH, thus the values of rootb_par
should be well constrained by the LH observations. And we see that the prior uncertainty of rootb_par
is greatly reduced by the model calibration to a small posterior uncertainty with a narrow PDF shape.
Also, we know that parameters slatop and finr have a strong positive correlation and we observe that
their estimated joint distributions reflect this property.
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Figure 1: Parameter posterior distributions estimated by INN and MCMC in the synthetic case, where the blue
color highlights maximum a posteriori (MAP) estimate and the red color highlights the synthetic “true” value.

For nonlinear problems without analytical solutions of the parameter posteriors, we do not know the
exact shape of their PDFs. To further assess the accuracy of the parameter UQ, we investigate the
posteriors of the model outputs. If the parameter posterior uncertainty is reasonably quantified, the
generated LH posterior samples should enclose the observed value. Figure 2(a) indicates that the LH
samples from both INN and MCMC are closely distributed around the synthetic “true” observations;
their MAP predictions almost overlap with the "true" observation and their quantiles are also similar
to each other. This suggests that INN reasonably quantifies the parameter uncertainty and solves
the inverse problems accurately. It produces similar results with the MCMC sampling but using
much smaller computational costs (10 mins used for INN training Vs. 5 hours for MCMC sampling
after surrogate construction). Additionally, after INN is trained, for any given observations, INN can
produce corresponding parameter posterior distributions in seconds without retraining the network.
For further demonstration and to explore generalization properties of the trained INN, we evaluate the
network backwards for another set of synthetic observations and present the results in Appendix D.
This second synthetic case again demonstrates INN’s competence in accurate inverse modeling and
parameter UQ.
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Figure 2: Boxplots summarize LH predictions from the parameter posterior samples of INN and MCMC;
MAP_INN represents the prediction from the MAP estimate of INN and MAP_MCMC represents the prediction
from the MAP estimate of MCMC. “True” in (a) present synthetic observation; Obs in (b) is real observation.

In the real-data case, we reuse the trained INN and evaluate it backwards for the real observations.
The parameter estimation results are shown in Figure 3 and the generated LH posterior samples
are summarized in Figure 2(b) along with the MCMC approximations. The figures indicate that
INN produces similar results as MCMC both in the parameter UQ and in the LH predictions. Their
generated parameter posteriors, including marginal and joint distributions, show similar PDF shapes
and their MAP estimates are close to each other. Additionally, the LH prediction samples from both
methods accurately enclose the observed data (Figure 2(b)). Their MAP estimates have a nice fit
with the observed LH, where the NRMSE values of INN and MCMC estimates are 0.017 and 0.026,
respectively, and the R? values of INN and MCMC predictions are 0.97 and 0.92, respectively.

We draw similar conclusions in both the synthetic and real-data cases: INN can solve the inverse
problems effectively and efficiently; it provides accurate posteriors of both parameters and predictions
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Figure 3: Parameter posterior distributions estimated by INN and MCMC in the real-data case.

which show similar PDF shapes and MAP estimates with the MCMC. However, the computational
time of INN is much less than that of MCMC. In both cases, MCMC takes 5 hours for sampling after
surrogate construction. In contrast, the evaluation time of INN is only 3 seconds after training. The
training of INN takes 10 mins and the same trained network is used in both cases.

Since INN is trained bidirectionally, it also provides approximations of forward model simulations.
When evaluating the trained INN forwards with a set of parameter values, the network provides
an approximation to the forward process and yields LH simulations. In this case, INN serves as
a surrogate model of the ELM for model outputs simulation. To assess the forward capability of
INN, we perform the forward evaluation for the 1000 prior samples. If INN produces an accurate
approximation of ELM, it should generate LH simulations similar to the ELM outputs. Figure 4
indicates that INN provides a good approximation/surrogate to the ELM. The INN predictions show
a strong consistency with ELM simulations, where the R? of all the five quantities consistently have
values of 1.0. As the ELM simulation is computationally expensive (one ELM run takes 2-3 hours in
this study), INN provides an accurate and fast-to-evaluate surrogate which will greatly reduce the
computational costs in modeling tasks where many forward evaluations are required.
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Figure 4: Comparison between INN forward evaluated LH and ELM simulated LH for the 1000 prior samples.

5 DISCUSSION AND FUTURE WORK

We apply the invertible neural networks for ELM model calibration and simulation at one AmeriFlux
site. In both synthetic and real-data applications, we demonstrate that INN can accurately solve
the inverse problems by generating parameter posterior distributions that can be interpreted by our
domain knowledge and justified by the synthetic truth and predictions. The INN-estimated posteriors
are similar to the MCMC approximations, but INN greatly reduces the computational time and
infrastructure for computing parameter posteriors and predictions. Additionally, INN produces
accurate forward model approximations which can serve as an effective fast-to-evaluate surrogate
of the ELM at the site. In the future, we will apply INN to other AmeriFlux sites for parameter
estimation and improve the ELM predictability globally.

INN can be widely applied to a variety of parameter estimation problems. But for grid-based
parameters with hundreds of dimensions, it may require a large number of training data and a long
training time. Additionally, for some calibration problems where the observations are outside the
training samples, INN may have relatively low accuracy in approximating the parameter distributions
because of the extrapolation error in network training.
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APPENDIX

A INVERTIBLE NEURAL NETWORK STRUCTURE

A typical design of an invertible neural network (INN) contains a serial sequence of reversible blocks
[19], each of which consists of two coupled layers. Each block’s input vector u (e.g., u can be
the model parameter vector) is split into two halves w; and ws, which are transformed by an affine
function with coefficients exp(s;) and ¢; to produce the output (vi, v2):

v1 = ug © exp(sa(uz)) + ta(us), va = us ® exp(sy(v1)) + t1(v1). (2)
Given the output v = [v1, v2], these expressions are trivially invertible:
ug = (vg — t1(v1)) © exp(—s1(v1)), w1 = (v1 — ta(uz)) © exp(—sa(usz)). 3)

Note that functions s; and ¢; do not need to be invertible. In our implementation, they are realized by
a succession of several fully connected layers with leaky ReLLU activations. To improve interaction
between parameters of the input vector, we add a permutation layer after each reversible block.

B NETWORK CONFIGURATION

The INN used in this work is designed using four reversible blocks, each of which contains fully
connected subnetworks. Each affine function (i.e., s; and ¢; in Appendix A) is implemented using
a neural network with 3 fully connected layers each of which contains 128 hidden units with leaky
ReLU activation functions. The ADAM optimizer is used with a learning rate of 0.001. We use a
relatively small batch size of 10 considering the small number of training data. The network has
converged after 1000 epochs when both the training loss and validation loss become stationary.

C PERFORMANCE EVALUATION METRICS

We consider two evaluation metrics, normalized root mean squared error (NRMSE), and coefficient
of determination (R?).

Sl (v = v

N
Eij\; (Yz'()bs - Ygsmf
S (v -7’

NRMSE =

“4)

R*=1-

(&)

where Yi"bs is the ¢th observation, Yfim is the ¢th simulated value, YObS is the mean of observation,
and N is the total number of observations. NRMSE measures the estimation errors in a squared
sense normalized by the observations; its value varies from the optimal O to a large positive number.
The lower the NRMSE value is, the better the model simulation performance. R? is a normalized
statistic that determines the relative magnitude of the residual variance compared to the observation
variance. It indicates how well the plot of observed versus simulated data fits the 1:1 consistency
line. R? value ranges from negative infinity to 1.0. A value of 1.0 corresponds to a perfect match of
model simulations to observations, and a negative R? indicates that the model performs worse than
the observed mean.

D RESULTS OF THE SECOND SYNTHETIC CASE

This section provides the results of another synthetic case, where we pick a different sample from the
ELM simulation as the synthetic truth than the one presented in the main text. The following Figure 5
summarizes the parameter estimations results from the INN and the MCMC and Figure 6 shows the
corresponding LH predictions. This synthetic case once again demonstrates INNs’ competence in
accurate inverse modeling and parameter UQ.
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Figure 5: Parameter posterior distributions estimated by the INN and MCMC in the second synthetic case.

66
I INN
MCMC
629 == "True"
— MAP_INN
—— MAP_MCMC
58 =
@
g
< 541
T
—
50 1
46 -
42 T T T T T
2006 2007 2008 2009 2010

Figure 6: Prediction results of LH in the second synthetic case.
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