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ABSTRACT

FourCastNet, short for Fourier ForeCasting Neural Network, is a global data-
driven weather forecasting model that provides accurate short to medium-range
global predictions at 0.25◦ resolution. FourCastNet accurately forecasts high-
resolution, fast-timescale variables such as the surface wind speed and precipita-
tion. It has important implications for planning wind energy resources, predicting
extreme weather events such as tropical cyclones, extra-tropical cyclones, and at-
mospheric rivers. FourCastNet matches the forecasting accuracy of the ECMWF
Integrated Forecasting System (IFS), a state-of-the-art Numerical Weather Predic-
tion (NWP) model, at short lead times for large-scale variables, while outperform-
ing IFS for variables with complex fine-scale structure, including precipitation.
FourCastNet generates a week-long forecast in less than 2 seconds, orders of mag-
nitude faster than IFS. The speed of FourCastNet enables the creation of rapid and
inexpensive large-ensemble forecasts with thousands of ensemble-members for
improving probabilistic forecasting. We discuss how data-driven deep learning
models such as FourCastNet are a valuable addition to the meteorology toolkit to
aid and augment NWP models.

The beginnings of modern numerical weather prediction (NWP) can be traced to the 1920s. Now
ubiquitous, they contribute to economic planning in key sectors such as transport, logistics, agri-
culture, and energy production. Accurate weather forecasts have saved countless human lives by
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providing advance notice of extreme events. The quality of weather forecasts has been steadily
improving over the past decades (c.f. Bauer et al. (2015); Alley et al. (2019)).

There is now increasing interest around developing data-driven DL-based models for weather fore-
casting owing to their orders of magnitude lower computational cost as compared to state-of-the-art
NWP models (Schultz et al., 2021; Balaji, 2021; Irrgang et al., 2021; Reichstein et al., 2019). Many
studies have attempted to build data-driven models for forecasting the large-scale circulation of the
atmosphere, either trained on climate model outputs, general circulation models (GCM) (Scher &
Messori, 2018; 2019; Chattopadhyay et al., 2020), reanalysis products (Weyn et al., 2019; 2020;
2021; Rasp et al., 2020; Rasp & Thuerey, 2021a; 2020; Chattopadhyay et al., 2021; Arcomano
et al., 2020; Chantry et al., 2021; Grönquist et al., 2021), or a blend of climate model outputs and
reanalysis products (Rasp & Thuerey, 2021a).

By training on reanalysis data or observations, data-driven models have great potential to improve
weather predictions by overcoming model biases present in NWP models(Schultz et al., 2021; Balaji,
2021). They also enable the generation of large ensembles at low computational cost for probabilistic
forecasting and data assimilation (Chattopadhyay et al., 2021; Weyn et al., 2021; Chattopadhyay
et al., 2020).

Most data-driven weather models, however, use low-resolution data for training, usually at the
5.625◦ resolution as in Rasp & Thuerey (2021b) or 2◦ as in Weyn et al. (2020). However, the
coarsening procedure leads to the loss of crucial, fine-scale physical information. For data-driven
models to be truly impactful, it is essential that they generate forecasts at resolutions equal to or
greater than current state-of-the-art numerical weather models, which are run at ≈ 0.1◦ resolution.
Forecasts at 5.625◦ spatial resolution, for instance, result in a mere 32× 64 pixels grid representing
the entire globe leading to limited practical utility. High-resolution models can resolve the forma-
tion and dynamics of high-impact extreme events such as tropical cyclones, which are inadequately
represented on a coarser grid.

Our approach: We develop FourCastNet, a Fourier-based neural network forecasting model, to
generate global data-driven forecasts of key atmospheric variables at a resolution of 0.25◦, or about
30 km × 30 km near the equator and a global grid size of 720× 1440 pixels. This allows us, for the
first time, to make a direct comparison with the high-resolution Integrated Forecasting System (IFS)
model of the European Center for Medium-Range Weather Forecasting (ECMWF).

Figure 1 shows an illustrative global near-surface wind speed forecast at a 96-hour lead time gen-
erated using FourCastNet. We highlight key high-resolution details that are resolved and accurately
tracked by our forecast, including Super Typhoon Mangkhut and three named cyclones heading
towards the eastern coast of the United States (Florence, Issac, and Helene).

FourCastNet uses a Fourier transform-based token-mixing scheme (Guibas et al., 2022) with a vision
transformer (ViT) backbone (Dosovitskiy et al., 2021). This approach is based on the recent Fourier
neural operator that learns in a resolution-invariant manner and has shown success in modeling
challenging partial differential equations (PDE) such as fluid dynamics (Li et al., 2021). Combining
a ViT backbone with Fourier-based token mixing yields a state-of-the-art high-resolution model
that resolves fine-grained features, models long-range dependencies accurately, and scales well with
resolution and size of dataset1.

In summary, FourCastNet makes four significant contributions to data-driven weather forecasting:

1. FourCastNet predicts challenging variables with complex fine-scale structure such as surface
winds and precipitation, with unparalleled accuracy at forecast lead times of up to one week.
No deep learning (DL) model thus far has attempted to forecast surface winds on global scales.
Additionally, DL models for precipitation on global scales have been inadequate for resolving
fine-scale structures.

2. FourCastNet, at 0.25◦ resolution, has eight times greater resolution than state-of-the-art DL-
based global weather models. FourCastNet accurately resolves extreme weather patterns such
as tropical cyclones and atmospheric rivers that have been inadequately represented by prior DL
models owing to their coarser grids.

1We estimate that FourCastNet could be trained on currently available GPU hardware in about two months
with 40 years of global 5-km data, if such data were available.
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Figure 1: Illustrative example of a global near-surface wind forecast generated by FourCastNet at
a resolution of 0.25

◦
. We initialize FourCastNet with an initial condition from the out-of-sample

test dataset (September 8, 2018 at 00:00 UTC). Starting from this initial condition, the model was
allowed to run freely for 16 time-steps of six hours each corresponding to a 96-hour forecast. Panel
(a) shows the wind speed at model initialization. Panel (b) shows the model forecasts at forecast lead
time of 96 hours (upper panel) and the corresponding true wind speeds at that time (lower panel).
FourCastNet is able to forecast the wind speeds 96 hours in advance with remarkable fidelity and
correct fine-scale features. The forecast accurately captures the formation, track, and intensification
of Super Typhoon Mangkhut and three named hurricanes (Florence, Issac, and Helene) forming in
the Atlantic Ocean and approaching the eastern coast of North America (see Inset 2).

Vertical Level Variables Vertical Level Variables
Surface U10, V10, T2m, sp, mslp 1000hPa U , V , Z
850hPa T , U , V , Z, RH 500hPa T , U , V , Z, RH
50hPa Z Integrated TCWV

Table 1: Prognostic Variables modeled by the DL model. Abbreviations are as follows. U10 (V10):
zonal (meridonal) wind velocity 10m from the surface; T2m: Temperature at 2m from the surface;
T , T , V , Z. RH: Temperature, zonal velocity, meridonal velocity, geopotential, relative humidity
respectively at specified vertical level; TCWV : Total Column Water Vapor.

3. FourCastNet’s predictions are comparable to the IFS model on metrics of Root Mean Squared
Error (RMSE) and Anomaly Correlation Coefficient (ACC) at lead times of up to three days.
After that, predictions of all modeled variables lag close behind IFS at lead times of up to a
week. The IFS model has been developed over decades, contains over 150 variables each with
more than 50 vertical levels in the atmosphere, and is guided by physics. In contrast, FourCastNet
models 20 variables at five vertical levels, and is purely data driven.

4. FourCastNet’s reliable, rapid (about 45,000 times faster than traditional NWP), and computation-
ally inexpensive (12,000 times cheaper than NWP) forecasts facilitate the generation of very large
ensembles. This enables estimation of well-calibrated and constrained uncertainties in extremes
with higher confidence than current NWP ensembles, which have at most 50 members owing to
their high computational cost. Fast generation of 1,000-member ensembles dramatically changes
what is possible in probabilistic weather forecasting.
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1 TRAINING AND INFERENCE

We train the FourCastNet model on the ERA5 (Hersbach et al., 2020) reanalysis dataset from the
years 1979 to 2015. Further methodological details are provided in Appendix A. We generate fore-
casts of a few core atmospheric variables listed in Table 1 and the total precipitation by using our
trained models in autoregressive inference mode. The model is initialized with an initial condition
(Xtrue(j)) from the year 2018 2, which is part of the out-of-sample held out dataset, for a large num-
ber of different initial conditions and allowed to freely run iteratively for τ time-steps to generate
forecasts {Xpred(j+i∆t)}τi=1. We also use the IFS forecasts for the year 2018 from The International
Grand Global Ensemble (TIGGE) archive for comparative analysis. The archived IFS forecasts, with
initial conditions matching the times of corresponding initial conditions for the FourCastNet model
forecast, are used to compare our model’s accuracy to that of the IFS model.

2 RESULTS

Figure 1 qualitatively shows the skill of FourCastNet when forecasting near-surface wind speeds
over the entire globe at a resolution of 0.25

◦
-lat-long. The wind speeds are computed as the magni-

tude of the surface wind velocity components (
√
(U2

10 + V 2
10)) included in the FourCastNet model

backbone. We initialize the FourCastNet model with an initial condition from the out-of-sample test
dataset. Starting from this initial condition (September 8, 2018 at 00:00 UTC), the model is allowed
to run freely for 16 time-steps in inference mode (Figure 4(d)). Figure 1(a) shows the wind speed at
model initialization. Figure 1(b) shows the model forecasts at a lead time of 96 hours (upper-panel)
and the corresponding true wind speeds at that time (lower-panel). We note that the FourCastNet
model is able to forecast the wind speeds up to 96 hours in advance with remarkable fidelity and
accurate fine-scale features. Notably, this figure illustrates the FourCastNet forecast of the formation
and track of a super-typhoon named Mangkhut along with three simultaneous hurricanes (Florence,
Issac and Helene) in the Atlantic ocean.

2.1 HURRICANES

A rapidly available, computationally inexpensive atmospheric model that could could forewarn the
possibility of hurricane formation and track the path of the hurricane would be of great utility for
mitigating loss of life and property damage. As the stakes for mis-forecasting such extreme weather
phenomena are very high, more rigorous studies need to be undertaken before DL can be considered
a mature technology for hurricane forecasting. As a case-study we consider a hurricane that occurred
in 2018 (a year that is part of our out-of-sample dataset), namely hurricane Michael. Michael was
a category 5 hurricane on the Saffir -Simpson Hurricane Wind Scale that made landfall in Florida
causing catastrophic damage (Beven II et al., 2019). Within a short period of roughly 72 hours
starting October 7, 2018, Michael went from a tropical depression to a category 5 hurricane at
landfall.

We applied our trained model as described in Section A.2 (with no further changes) to study its
potential for forecasting the formation, rapid intensification and tracking of hurricane Michael. We
started with the initial condition at calendar time 00:00 hours on October 7, 2018 UTC. This state
was perturbed with Gaussian noise to generate an ensemble of E = 100 perturbed initial conditions.
Figure 2 shows the track of the hurricane and the intensification as forecast by the 100-member
FourCastNet ensemble using the Mean Sea Level Pressure to estimate the position of the hurricane’s
eye and the minimum pressure at its center. Figure 2(a) shows the mean position of the minima
of Mean Sea Level Pressure using a 100 member ensemble forecast generated by FourCastNet (red
circles). The corresponding ground truth according to ERA5 reanalysis is indicated on the same
plot (blue squares) over a trajectory spanning 108 hours. The shaded ellipses in the figure have
a width and height equal to the 90th percentile spread in the longitudinal and latitudinal positions
respectively of the hurricane eye as indicated by the MSLP minima in the 100-member FourCastNet
ensemble. Fig. 2(b) shows the 850hPa wind speed forecast using FourCastNet and corresponding
ground truth at lead times of 18hr, 36hr, 54hr and 72hr.

2The year 2018 was chosen from the out-of-sample dataset due to ready availability of IFS forecasts for that
year from the TIGGE archive.

4



Published as a conference paper at ICLR 2022

Figure 2: The FourCastNet model has excellent skill on forecasting fine-scale, rapidly changing
variables relevant to a hurricane forecast. As an illustrative example, we have chosen Hurricane
Michael which underwent rapid intensification during the course of its four day trajectory. Panel (a)
shows the mean position of the minima of Mean Sea Level Pressure (indicating the eye of hurricane
Michael) as forecast by a 100 member ensemble forecast using FourCastNet (red circles) and the
corresponding ground truth according to ERA5 reanalysis (blue squares) for 108 hours starting from
the initial condition at 00:00 hours on October 7, 2018 UTC. The shaded ellipses have a width and
height equal to the 90th percentile spread of the longitudinal and latitudinal positions respectively
of the hurricane eye as indicated by the MSLP minima in the 100-member FourCastNet ensemble.
Panel (b) shows the 850hPa wind speed forecast and corresponding ground truth at forecast lead
times of 18hr, 36hr, 54hr and 72hr lead times.

2.2 QUANTITATIVE COMPARISON TO IFS

We illustrate the forecast skill of our model for several initial conditions from the out-of-sample
dataset (consisting of the year 2018) and generate a forecast for each initial condition. For each
forecast, we evaluate the latitude-weighted Anomaly Correlation Coefficient (ACC) for all of the
variables included in the forecast. We report the mean ACC for key variables along with the first
and third quartile values of the ACC at each forecast time step, to show the dispersion of these
metrics over different initial conditions. As a comparison, we also compute the same ACC metrics
for the corresponding IFS forecast with time-matched initial conditions.

Figure 3(a-f) shows the latitude weighted ACC for the FourCastNet model forecasts (Red line with
markers) and the corresponding matched IFS forecasts (Blue line with markers) for the variables (a)
U10, (b) TP , (c) T2m. The ACC values are averaged over several initial conditions (U10, TP : 180
I.C; T2m: 40 I.Cs ). The shaded regions around the ACC curves indicate the region between the first
and third quartile values of the corresponding quantity at each time step. In general, the FourCastNet
predictions are very competitive with IFS, with our model achieving similar ACC and RMSE over
a horizon of several days. At shorter lead times (∼ 48hrs or less), we actually outperform the IFS
model for key variables like precipitation, winds, and temperature. Remarkably, we achieve this
accuracy using only part of the full variable set available to the IFS model, and we do so at a fraction
of the compute cost (see Appendix A.5 for a detailed speed comparison between models).

3 DISCUSSION, CONCLUSIONS AND FUTURE WORK

FourCastNet’s predictions are orders of magnitude faster than traditional NWP models. This can
facilitate large ensemble forecasts of thousands of members generated in seconds. Current NWP
ensembles have at most approximately 50 members owing to their high computational cost. Such
large-ensemble probabilistic weather forecasting can improve reliability of early warnings of ex-
treme weather events. The unprecedented accuracy in short-range forecasts of precipitation and its
extremes has potentially massive benefits for society such as enabling a rapid response to flooding.
For the wind energy industry, FourCastNet’s rapid and reliable high-resolution wind forecasts can
help plan for fluctuations in wind power output. Due to the absence of a data-assimilation compo-
nent, FourCastNet cannot yet generate up-to-the-minute weather forecasts. If observations are avail-
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Figure 3: Latitude weighted ACC for the FourCastNet model forecasts (red line with markers) and
the corresponding matched IFS forecasts (blue line with markers) averaged over several forecasts
initialized using initial conditions in the out-of-sample testing dataset corresponding to the calendar
year 2018 for the variables (a) U10, (b) TP , (c) T2m. The ACC values are averaged over many initial
conditions (T2m: 40 I.Cs; TP , U10: 180 I.Cs) over a full year to account for seasonal variability in
forecast skill. The appropriately colored shaded regions around the ACC curves indicate the region
between the first and third quartile values of the corresponding quantity at each time step.

able, however, such a component could be readily incorporated. This will enable real-time weather
prediction by initializing the model with real-time observations. FourCastNet’s skill improves as
the number of modeled variables increases. A larger model trained on more variables, perhaps even
entire 3D atmospheric fields, may extend prediction horizons still further and with better uncertainty
estimates. In the near future, FourCastNet could be trained on the entire nine petabyte ERA5 dataset
to predict all currently predicted variables in NWP at every atmospheric level. Although the cost of
training such a model will be huge, fast inference would enable rapid prediction of the full 3D fields
in a few seconds. Such an advancement will likely revolutionize weather prediction.
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ter for providing computing support. JP and KK would like to thank Sanjay Choudhry and the
NVIDIA Modulus team for their support. JP, SS, P. Harrington and KK would like to thank Wahid
Bhimji for helpful comments.

REFERENCES

Richard B Alley, Kerry A Emanuel, and Fuqing Zhang. Advances in weather prediction. Science,
363(6425):342–344, 2019.

Troy Arcomano, Istvan Szunyogh, Jaideep Pathak, Alexander Wikner, Brian R Hunt, and Edward
Ott. A machine learning-based global atmospheric forecast model. Geophysical Research Letters,
47(9):e2020GL087776, 2020.

V Balaji. Climbing down charney’s ladder: machine learning and the post-dennard era of computa-
tional climate science. Philosophical Transactions of the Royal Society A, 379(2194):20200085,
2021.

Peter Bauer, Alan Thorpe, and Gilbert Brunet. The quiet revolution of numerical weather prediction.
Nature, 525(7567):47–55, 2015.

6



Published as a conference paper at ICLR 2022

Peter Bauer, Tiago Quintino, Nils Wedi, Antonio Bonanni, Marcin Chrust, Willem Deconinck,
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Figure 4: (a) The multi-layer transformer architecture that utilizes the Adaptive Fourier Neural Op-
erator with shared MLP and frequency soft-thresholding for spatial token mixing. The input frame
is first divided into a h×w grid of patches, where each patch has a small size p× p× c. Each patch
is then embedded in a higher dimensional space with high number of latent channels and position
embedding is added to form a sequence of tokens. Tokens are then mixed spatially using AFNO, and
subsequently for each token the latent channels are mixed. This process is repeated for L layers, and
finally a linear decoder reconstructs the patches for the next frame from the final embedding. The
right-hand panels describe the FourCastNet model’s additional training and inference modes: (b)
two-step fine-tuning, (c) backbone model that forecasts the 20 variables in Table 1 with secondary
precipitation diagnostic model (note that p(k+1) denotes the 6 hour accumulated total precipitation
that falls between k + 1 and k + 2 time steps) (d) forecast model in free-running autoregressive
inference mode.

A APPENDIX

A.1 FOURCASTNET: MODEL DESCRIPTION

To produce our high-resolution forecasts, we choose the Adaptive Fourier Neural Operator (AFNO)
model (Guibas et al., 2022). This particular neural network architecture is appealing as it is specif-
ically designed for high-resolution inputs and synthesizes several key recent advances in DL into
one model. Namely, it combines the Fourier Neural Operator (FNO) learning approach of Li et al.
(2021), which has been shown to perform well in modeling challenging PDE systems, with a power-
ful ViT backbone. The AFNO model is unique in that it frames the mixing operation as continuous
global convolution, implemented efficiently in the Fourier domain with FFTs, which allows model-
ing dependencies across spatial and channel dimensions flexibly and scalably. With such a design,
the spatial mixing complexity is reduced to O(N logN), where N is the number of image patches
or tokens. This scaling allows the AFNO model to be well-suited to high-resolution data at the
current 0.25

◦
resolution considered in this paper as well as potential future work at an even higher

resolution. In the original FNO formulation, the operator learning approach showed impressive re-
sults solving turbulent Navier-Stokes systems, so incorporating this into a data-driven atmospheric
model is a natural choice.

We refer the reader to the original AFNO paper (Guibas et al., 2022) for more details on the AFNO
architecture and provide an illustration in Fig. 4(a).

A.2 TRAINING

The ECMWF provides a publicly available, comprehensive reanalysis (Kalnay et al., 1996) dataset
called ERA5 (Hersbach et al., 2020) which consists of hourly estimates of several atmospheric
variables at a latitude and longitude resolution of 0.25◦ from the surface of the earth to roughly 100
km altitude from 1979 to the present day. We use a subset of the ERA5 dataset to train FourCastNet.
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In order to model complex atmospheric interactions, we choose a few variables (Table 1) to represent
the instantaneous state of the atmosphere. Each of the 20 variables is represented as a 2D field of
shape (721 × 1440) pixels. Thus, a single training data point at an instant in time containing all 20
variables is represented by a tensor of shape (721×1440×20). While the ERA5 dataset is available
at a temporal resolution of 1 hour, we choose to sub-sample the dataset and use snapshots spaced 6
hours apart to train our model. We divide the dataset into three sets, namely training, validation and
out-of-sample testing datasets. The training dataset consists of data from the year 1979 to 2015 (both
included). The validation dataset contains data from the years 2016 and 2017. The out-of-sample
testing dataset consists of the years 2018 and beyond.

We collectively denote the modeled variables by the tensor X(k∆t), where k denotes the time in-
dex and ∆t is the temporal spacing between consecutive snapshots in the training dataset. We will
consider the ERA5 dataset as the truth and denote the true variables by Xtrue(k∆t). With the under-
standing that ∆t is fixed at 6 hours throughout this work, we omit ∆t in our notation for convenience
where appropriate. The training procedure consists of two steps, pre-training and fine-tuning. In the
pre-training step, we train the AFNO model using the training dataset in a supervised fashion to
learn the mapping from X(k) to X(k + 1). We then fine-tune the model using a two-step rollout
to ensure stability. The end to end training takes about 16 hours wall-clock time on a cluster of 64
Nvidia A100 GPUs.

A.3 PRECIPITATION MODEL

The total precipitation (TP ) in the ERA5 re-analysis dataset is a variable that represents the the
accumulated liquid and frozen water that falls to the Earth’s surface through rainfall and snow.
Compared to the variables handled by our backbone model, TP exhibits more sparse spatial features
than the other prognostic variables. For these reasons, we treat the total precipitation (TP ) as a
diagnostic variable and denote it by p(k∆t). Total precipitation is not included in the 20 variable
dataset used to train the backbone model3. Rather, we train a separate AFNO model to diagnose TP
using the outputs of the backbone model, as indicated in Figure 4(c). In addition, once trained, our
diagnostic TP model could potentially be used in conjunction with other forecast models (either
traditional NWP or data-driven forecasts).

A.4 INFERENCE

We generate forecasts of the core atmospheric variables in Table 1 and the total precipitation by
using our trained models in autoregressive inference mode as shown in Figure 4(d). The model is
initialized with an initial condition (Xtrue(j)) from the year 2018 4 out-of-sample held out dataset
for Nf different initial conditions and allowed to freely run iteratively for τ time-steps to generate
forecasts {Xpred(j+i∆t)}τi=1. We also use the IFS forecasts for the year 2018 from The International
Grand Global Ensemble (TIGGE) archive for comparative analysis. The archived IFS forecasts, with
initial conditions matching the times of corresponding initial conditions for the FourCastNet model
forecast, are used for comparing our model’s accuracy to that of the IFS model.

A.5 COMPUTATIONAL COST OF FOURCASTNET

To estimate the forecast speed of the IFS model, we use figures provided in Bauer et al. (2020) as
a baseline. In Ref. (Bauer et al., 2020), we see that the IFS model computes a 15-day, 51-member
ensemble forecast using the “L91” 18km resolution grid on 1530 Cray XC40 nodes with dual socket
Intel Haswell processors in 82 minutes. The IFS model archived in TIGGE, which we compare the
FourCastNet predictions with in Section 2.2, also uses the L91 18km grid for computation (but is
archived at the ERA5 resolution of 30km). Based on this information, we estimate the compute-cost
and energy consumption of the IFS for a 100-member 24-hour ensemble forecast5. The FourCastNet
model can compute a 100-member 24-hour forecast in 7 seconds by using a single node on the

3This approach is similar to previous work (Rasp & Thuerey, 2021b), which trained a separate model for
precipitation than for the other atmospheric variables.

4The year 2018 was chosen from the out-of-sample dataset due to ready availability of IFS forecasts for that
year from the TIGGE archive.

5A dual-socket Intel Haswell node draws a Thermal Design Power (TDP) of 270 Watts
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Figure 5: Comparison of ACC and RMSE metrics between the (downsampled) FourCastNet pre-
dictions, (downsampled) IFS, and baseline state-of-the-art DLWP model (Weyn et al., 2020) for (a)
Z500 and (b) T2m. We observe that the FourCastNet predictions show significant improvement over
the baseline model. We also note that the FourCastNet generates predictions that have a higher res-
olution by a factor of 8, and is thus able to resolve many more important fine-scale features than the
DLWP model.

Perlmutter HPC cluster which contains 4 A100 GPUs per node and has a peak power consumption
of 1kW. We attempt to account for the resolution difference between the 18km L91 model and the
30km FourCastNet model by additionally reporting the inference time for an 18km FourCastNet
model by interpolating the model parameters and inputs. These calculations, tabulated in Table. 2
show that the FourCastNet model at 30km resolution is about 145,000 times faster than the IFS
whereas an interpolated FourCastNet model at 18km resolution would be 45,000 times faster than
the IFS.

Latency and Energy consumption for a 24-hour 100-member ensemble forecast

IFS FCN - 30km
(actual)

FCN - 18km
(extrapolated) IFS / FCN(18km) Ratio

Nodes required 3060 1 2 1530
Latency
(Node-seconds) 984000 7 22 44727

Energy Consumed
(kJ) 271000 7 22 12318

Table 2: The FourCastNet model is about 45,000 times faster than the IFS model on a node-hour
basis and uses about 12,000 times less energy to generate a forecast.

A.6 COMPARISON AGAINST STATE-OF-THE-ART DL WEATHER PREDICTION

To the best of our knowledge, the current state-of-the-art DL weather prediction model is the DLWP
model of Weyn et al. (2020). The authors work with a coarser resolution of 2◦ and forecast variables
relating to geopotential heights, geopotential thickness, and 2-m temperature (see (Weyn et al., 2020)
for further details). The FourCastNet model predicts more variables than the DLWP model at a
resolution that is higher than the DLWP model by a factor of 8, allowing us to resolve important
phenomena such as hurricanes, extreme precipitation and atmospheric rivers. We downsample the
FourCastNet outputs eight times in each direction using bilinear interpolation to bring them to a
resolution comparable to that of the DLWP model. Coarsening our forecasts and making them less
effective in order to accommodate a prior benchmark at a lower resolution is not fair to our model
but we provide this comparison for completeness. We re-compute our ACC and RMSE metrics for
the two variables reported in the DLWP results, Z500 and T2m. We also note that the ACC metric in
the DLWP work was computed using daily climatology so we modify our ACC computation using
the same definition for a fair comparison. We observe (Figure 5) that even at the lower resolution of
the DLWP work, the FourCastNet model predictions show significant improvement over the current
state-of-the-art DLWP model in both variables.
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