
Published as a workshop paper at ICLR 2022

LEARNING LARGE-SCALE SUBSURFACE SIMULA-
TIONS WITH A HYBRID GRAPH NETWORK SIMULATOR

Tailin Wu, Qinchen Wang, Yinan Zhang, Rex Ying, Kaidi Cao, Rok Sosič, Jure Leskovec
Department of Computer Science
Stanford University
{tailin,qinchenw,yinanzy,rexying,kaidicao,rok,jure}@cs.stanford.edu

Ridwan Jalali, Hassan Hamam, Marko Maucec
Saudi Aramco
{ridwan.jalali,hassan.hamam,marko.maucec}@aramco.com

ABSTRACT

Subsurface simulations use computational models to predict the flow of fluids
(e.g., oil, water, gas) through porous media. These simulations are pivotal in in-
dustrial applications such as petroleum production, where fast and accurate mod-
els are needed for high-stake decision making, for example, for well placement
optimization and field development planning. Classical finite difference numeri-
cal simulators require massive computational resources to model large-scale real-
world reservoirs. Alternatively, streamline simulators and data-driven surrogate
models are computationally more efficient by relying on approximate physics
models, however they are not able to model complex reservoir dynamics at scale.
Here we introduce Hybrid Graph Network Simulator (HGNS), which is a data-
driven surrogate model for learning reservoir simulations of 3D subsurface fluid
flows. To model complex reservoir dynamics at both local and global scale, HGNS
consists of a subsurface graph neural network (SGNN) to model the evolution of
fluid flows, and a 3D-U-Net to model the evolution of pressure. HGNS is able to
scale to grids with millions of cells per time step, two orders of magnitude higher
than previous surrogate models, and can accurately predict the fluid flow for tens
of time steps (years into the future). Using an industry-standard subsurface flow
dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to
reduce the inference time up to 18 times compared to standard subsurface simu-
lators, and that it outperforms other learning-based models by reducing long-term
prediction errors by up to 21%.

1 INTRODUCTION

Subsurface simulation is a discipline that uses computational models to predict the flow of flu-
ids (e.g., oil, water, gas) through porous media. It is pivotal for management of hydrocarbon and
groundwater resources. The goal of simulations is to take as input static properties of the rock, initial
states of quantities such as oil and water, and external control variables such as injection of water,
then predict the evolution of pressure and saturation of fluids over time (see Fig. 1 and Appendix A).

Two key challenges need to be addressed for practical, large-scale applications. First, subsurface
flow is a multi-scale problem. On the smaller spatial scale, it needs to model multiphase fluids
flow through the complex subsurface structures: between neighboring cells (a cell is a discretization
of space containing porous media through which fluid can flow), with various well configurations
(wells can inject or produce fluids externally), and in presence of flow barriers (e.g., fault planes
that can divert or prevent fluid paths). On a larger spatial scale, the flow of fluids is driven by
convection forces and pressure gradient, whereas the dynamics of reservoir pressure is governed
by global pore fluid distribution and reaches the equilibrium much faster. Therefore, we need to
model both small and large spatial scales. Second, the model often needs to scale to very large grids.
For example, a standard industry problem typically consists of millions or tens of millions of cells.

1

Published as a workshop paper at ICLR 2022

(a) Subsurface simulation model.

Input Grid with
static/dynamic/computed/
control features

GNN
(multiple layers)

Pressure
Prediction

Fluid
Prediction

Time step t Time step t+1

Dynamic Static

Predicted
fluid & pressure
dynamics

Ground-truth
fluid & pressure
dynamics

Compute 1-step MSE Loss

Model !"

Edges: interaction between cells
(features: transmissibility,
direction etc.)

Nodes: cells in grid

3D-U-Net

Computed Control features

(b) Our HGNS architecture.

Figure 1: Overview of our HGNS architecture. (a) Water and oil exist in the porous rock which is discretized
into a computational grid cells. Blue pins are water injectors, red pins are oil producers. (b) HGNS consists of a
Subsurface Graph Neural Network (SGNN) to model the fluid dynamics, and a 3D-U-Net to model the pressure
dynamics. The input grid on the left is treated as a graph by modeling each cell as a node, and connecting the
adjacent cells via edges.

Field development applications, such as well configuration and completion for optimal dynamic
performance and improved sweep, could benefit significantly from subsurface simulators that can
perform fast inference and can scale to large grids.

Related work. Standard subsurface simulators employ domain-specific implicit partial differential
equation (PDE) solvers. For large grids with tens of millions of cells, they still need to solve an
equation involving the full grid, which may be computationally exhaustive and requires substantial
inference time. Recently, data-driven surrogate models provide a promising complementary ap-
proach (Sanchez-Gonzalez et al. (2020); mro (2018)). They learn directly from data and may thus
reduce years of engineering development required for new models. Moreover, prior works in other
domains show that the models can learn forward evolution (Sanchez-Gonzalez et al. (2020)) and
can have larger spatial and temporal intervals (Kochkov et al. (2021); Um et al. (2020)). However,
these models are not able to model the multi-scale dynamics, because they utilize Gaussian pro-
cess (Hamdi et al. (2017)), polynomial chaos (Bazargan et al. (2015)), feed-forward neural network
(Costa et al. (2014)), convolutional neural networks (Zhu & Zabaras (2018)), or recurrent R-U-Net
(Tang et al. (2020)), which cannot simultaneously model lower-level interactions between neighbor-
ing cells as well as global dynamics such as pressure. Additionally, they do not scale to large-scale
simulations as they have only been applied to 2D grids with up to 10k vertices (while a practical
simulation requires 3D grids), and up to 20k nodes for machine-learning-based surrogate models
developed in other domains, e.g. GNS (Sanchez-Gonzalez et al. (2020)), which is two to three
orders of magnitude smaller than needed for standard industry applications.

Present work. We introduce a Hybrid Graph Network Simulator (HGNS) for subsurface simulation,
which addresses the above two challenges (see Fig. 1b). HGNS consists of a Subsurface Graph
Neural Network (SGNN) designed to model the fluid flow through the complex subsurface structure,
and a 3D-U-Net (Çiçek et al. (2016)) to model the more global dynamics of pressure. SGNN and 3D-
U-Net cooperatively learn to evolve the subsurface dynamics. For large grids, which bring additional
challenges for training (exceeding GPU memory, training may take weeks), we developed a sector-
based training. It allows training on grids with millions of cells, two orders of magnitude larger
than previous machine-learning-based surrogate models. The ability to deal with models of this size
makes HGNS the first machine-learning-based subsurface model applied to realistic 3D scenarios.

We use an industry-standard subsurface flow dataset to evaluate our model’s generalization capa-
bilities in a challenging setting where the initial conditions, static properties and well locations are
different than that of training, and compare its performance with baselines. We show that HGNS
produces more accurate long-term evolution, and outperforms other learning-based models by re-
ducing long-term prediction errors by up to 21%.

2

Published as a workshop paper at ICLR 2022

2 METHOD

Background. Our aim is use machine learning to perform subsurface simulation of oil-water flow,
which models how the pressure and saturation of fluids evolve over time, given initial states, static
properties of the rock, and external control variables such as injection of water. We want our ap-
proach to handle complex well configurations (vertical wells, slanted wells, horizontal wells), faults
planes in rock that reduce, divert or prevent fluid flow.

Formally, we want to learn a simulator fθ, which takes as input: (a) Xt representing dynamic
variables such as water saturation, oil saturation and pressure at time t, (b) Q representing constant
values such as cell porosity, absolute permeability, cell depth, and pore volume, and (d) U t which
may include the injection of water, and predicts Xt+1.

Hybrid architecture. Our Hybrid Graph Network Simulator (HGNS) architecture (Fig. 1b) consists
of a Subsurface Graph Neural Network (SGNN) to model the dynamics of fluids (water, oil) on a
finer scale, and a 3D-U-Net (Çiçek et al. (2016)) to model the more global dynamics of pressure.
Concretely, our HGNS fθ can be written as:{

Ŝt+1 = gθ(X
t, Q, U t) + St

P̂ t+1 = hθ(X
t, Q, U t) + P t (1)

Here St is the saturation for water and oil, P t is pressure, gθ is the SGNN model and hθ is a
3D-U-Net (Çiçek et al. (2016)).

Our SGNN uses the encoder-processor-decoder architecture, similar to the work by Sanchez-
Gonzalez et al. (2020). The encoder embeds the input (Xt, Q, U t) into a latent graph G(0) =

(V(0), E(0)), where V(0) = {v(0)i } is the collection of input node features and E = {e(0)ij } is the
collection of edge features defined on the edges. After obtaining G(0), the encoder has a Multilayer
Perceptron (MLP) that encodes the node features V into some latent embedding. The processor is
a stack of M graph neural network layers, each one performing one round of message passing that
mimics the flow of fluid between neighboring cells. The decoder is a simple MLP that maps the
output of the processor back to the predicted dynamic variables at the next time step. Overall, our
SGNN models the complex subsurface flow by encoding the properties and dynamics of each cell
and cell-cell relation into node and edge features, then uses a very expressive edge-level MLPe to
compute the interaction between neighboring cells, and a node-level MLPv to update the state of
the cells. In this way, it is able to model subsurface flow in through complex subsurface structures.
Additionally, we use 3D-U-Net (Çiçek et al. (2016)) to model the more global dynamics of pressure,
since its hierarchical structure is better suited for this phenomena.

Sector-based training. Training of the model presents a challenge, since realistic data is too large
to fit in a single GPU. To address this problem, we developed sector-based training, which partitions
data into many sectors and which can be then processed individually. In this way, we can train with a
full grid of arbitrary size, because we can always partition the full grid into sectors with constant size
to fit into GPU’s memory. Our sector-based training accounts for the boundary conditions, makes
sure that all cells contribute to the loss computation in at least one sector, and takes advantage of
randomly mixing sectors in minibatches, which can reduce the correlation between examples and
help the model learn more general dynamics. In addition, sectors enable multi-GPU training, which
leads to significant speeding up of the training step. In addition, we develop multi-step rollout in
training (Appendix B) which significantly improves long-term prediction.

3 EXPERIMENTS

To evaluate our HGNS model we compare the long-term prediction performance of our HGNS
model against baselines and investigate how different components of HGNS contribute to predictive
performance. We evaluate the models in a challenging setting in which the static properties, initial
conditions and the well locations in testing are all different from that during training. In this way,
we measure how the models are able to generalize to novel scenarios.

Dataset and evaluation. We evaluate our model on an industry-standard subsurface simulation
dataset (SPE-10), a Single Porosity Single Permeability (SPSP) model, which does not have frac-
tures. Our evaluation set consists of a grid with ∼1.1 million cells and 20 trajectories. Each tra-
jectory has 61 time steps (the time interval between neighboring steps is 1-month), thus each epoch

3

Published as a workshop paper at ICLR 2022

Table 1: Mean Absolute Error (MAE) of our HGNS and other baseline models on the test set for pressure,
water and oil prediction, after 10-step (10 months) and 20-step rollout. HGNS outperforms the baselines by an
pressure error reduction of 5.5% and 6.7% for 10-step and 20-step, water error reduction of 21% and 8.4% for
10-step and 20-step, and oil error reduction of 21% and 8.3% for 10-step and 20-step, compared with the best
performing scenario in other models.

10-step prediction MAE 20-step prediction MAE

Model Pressure (psi) Water
(barrel)

Oil
(barrel) Pressure (psi) Water

(barrel)
Oil

(barrel)
Predict no change 210.8 0.941 0.941 296.1 1.541 1.541

CNN 77.9 0.628 0.608 104.2 1.157 1.090
3D-U-Net 94.6 0.361 0.361 142.6 0.725 0.724

HGNS (ours) 73.6 0.286 0.286 97.2 0.664 0.664

0 2 4 6 8 10 12 14 16 18 20
rollout step (month)

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

HGNS
3D-U-Net
CNN

(a) Fraction of cells whose
absolute error of pressure is
greater than 100 psi.

0 2 4 6 8 10 12 14 16 18 20
rollout step (month)

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

HGNS
3D-U-Net
CNN

(b) Fraction of cells whose
absolute error of water vol-
ume is greater than 1 barrel.

0 2 4 6 8 10 12 14 16 18 20
rollout step (month)

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

HGNS
3D-U-Net
CNN

(c) Fraction of cells whose ab-
solute error of oil volume is
greater than 1 barrel.

Figure 2: Comparison of models during rollout on the fraction of cells whose error of (a) pressure (b) water
volume (c) oil volume is above a given threshold. The lower the fraction, the better the prediction. HGNS
outperforms 3D-U-Net and CNN in both scenarios, achieving a reduction of fraction of 71% for pressure,
29.7% for water volume, and 28.7% for oil volume, compared with the best performing model.

needs to go through 1.37 billion cells. We randomly choose 16 trajectories for training, and the other
4 trajectories for testing. Since different trajectories have different static properties, initial states and
well locations, the performance at the test set evaluates how the models are able to generalize to
novel subsurface structures. In the testing, we provide the models the initial state at t = 3 (allowing
for 3 steps of initial stabilization), and autoregressively roll out the models for 10 and 20 steps, and
compute the Mean Absolute Error (MAE) between the model’s prediction and the ground-truth.

Baselines. We compare our HGNS model, trained with 4-step rollout, with two other baselines,
3D-U-Net (Çiçek et al. (2016)) and standard CNN, each trained with 4-step rollout. We also use
a “predict no change” baseline, in which the model simply copies the previous time step as its
prediction, to estimate the error scale. Table 1 shows the results. The ground-truth pressure is
typically on the level of 6000-10000 psi, and the water and oil volume is typically on the level of
10-20 barrels. Typically, a 100 psi error on the pressure and 1 barrel error on the water/oil on a cell
in a long-term prediction is deemed as acceptable.

Accuracy of 10- and 20-month predictions. Table 1 shows that our HGNS outperforms other
baselines by a wide margin, achieving 5.5% and 6.7% reduction of pressure error at 10-step and
20-step rollout, 21% and 8.4% reduction of water error at 10-step and 20-step, and 21% and 8.3%
reduction of oil error at 10-step and 20-step than the best-performing model. We also see that the
error of HGNS is much smaller than the “predict no change” baseline, showing that it has learned
non-trivial dynamics of the system.

Another important evaluation aspect is to compute the fraction of cells whose prediction error is less
than 100 psi for pressure and 1 barrel for water/oil volume. Fig. 2 shows the above fractions vs.
rollout steps for HGNS and the two other compared models. We see that HGNS outperforms the
other models consistently across all rollout steps, in fraction for pressure, water and oil. Moreover,
even after 20 steps (months) rollout of HGNS, the fraction of cells whose pressure error is greater
than 100 psi remains below 4.1%, 71% lower than the best performing model (3D-U-Net) whose
maximum fraction is 14.2%. Similarly, HGNS’s fraction of cells whose water and oil volume error is
below than 1 barrel remains below 14.8% and 18.9%, respectively, 29.7% and 28.7% lower than the

4

Published as a workshop paper at ICLR 2022

0 20 40

0

25

50

75

100

125

150

175

200

month 1, predict

0 20 40

0

25

50

75

100

125

150

175

200

month 1, ground-truth

0 20 40

0

25

50

75

100

125

150

175

200

month 20, predict

0 20 40

0

25

50

75

100

125

150

175

200

month 20, ground-truth

3

4

5

6

7

8

9

(a) Water volume (barrel) prediction vs.
ground-truth

0 20 40

0

25

50

75

100

125

150

175

200

month 1, predict

0 20 40

0

25

50

75

100

125

150

175

200

month 1, ground-truth

0 20 40

0

25

50

75

100

125

150

175

200

month 20, predict

0 20 40

0

25

50

75

100

125

150

175

200

month 20, ground-truth

8

10

12

14

16

(b) Oil volume (barrel) prediction vs. ground-
truth

Figure 3: Comparison of HGNS 1-step (1-month) and 20-step rollout vs. ground-truth, on (a) water volume
and (b) oil volume, on one of the trajectories, at a cross section of depth 20. For water and oil volume, images
are from left to right: month 1 prediction, month 1 ground-truth, month 20 prediction, month 20 ground-truth.
Notice that HGNS reliably captures water flow from 4 injectors (red dots) to the producer (blue dot at the
middle), and the oil flow and drainage due to the producer.

best performing model. This shows that the predictions of HGNS are above standard for a majority
of cells, and that they are a significant improvement over the baselines.

Fig. 3 shows our HGNS’s 20-step water and oil predictions in a typical test dataset and compares
them with ground-truth. Fig. 3 shows that our model captures reliably the water flow from the
injector (located at the corners and waist) to the middle producer and that our model captures the oil
flow and drainage due to the producer.

Table 2: Mean Absolute Error (MAE) of our HGNS and its ablations on the test set for pressure, water and
oil prediction, after 10-step (10 months) and 20-step rollout. Hybrid design and multi-step training of HGNS
improve performance by an average error reduction of 15.7% and 22.4%, respectively.

10-step prediction MAE 20-step prediction MAE

Model Pressure (psi) Water
(barrel)

Oil
(barrel) Pressure (psi) Water

(barrel)
Oil

(barrel)
HGNS (ours) 73.6 0.286 0.286 97.2 0.664 0.664

HGNS without 3D-U-Net (only SGNN) 74.8 0.307 0.307 110.5 0.829 0.829
HGNS without SGNN (only 3D-U-Net) 94.6 0.361 0.361 142.6 0.725 0.724

HGNS with 1-step 47.3 0.500 0.500 122.8 1.144 1.144

Ablations. To evaluate how the hybrid design and multi-step training contribute to the improved
performance, we compare HGNS with its ablations (see Table 2): one without 3D-U-Net (using
SGNN to predict both the pressure and fluid), one without SGNN (using 3D-U-Net to predict pres-
sure and fluid, same as in Table 1). Results show that using only 3D-U-Net and SGNN results in
worse performance than the hybrid design, and multi-step training improves long-term prediction.

Runtime comparison. On the dataset above with 1.1 million cells per trajectory, our HGNS took
20.7s to roll out 20-steps with an NVIDIA Quadro RTX 8000 GPU, compared to approximately
46s-370s (varying depending on the number of wells) required by the standard PDE solver using 4
compute nodes, each with 2 CPUs Intel(R) Xeon(R) E5-2680 v3 2.50GHz, a 2 to 18-fold reduction
in execution time. We expect that HGNS gains will be even larger with grid sizes over 10 million.

4 CONCLUSION

We presented a Hybrid Graph Network Simulator (HGNS) for learning subsurface simulations,
which employs a hybrid Subsurface Graph Neural Network (SGNN) to model the fluid flow through
the complex subsurface structures, and a 3D-U-Net to model the more global dynamics of pressure,
addressing the challenge of multi-scale dynamics. HGNS is able to perform training and inference
on grid sizes with millions of cells, two orders of magnitude larger than previous learning-based
subsurface surrogate models. Future work includes extending our HGNS to more challenging Dual
Porosity Dual Permeability (DPDP) subsurface models, where fractures act as conduits for fast fluid
flow, and accelerated history matching, and where static properties can be inferred and updated by
solving the inverse problem, conditioned to observed dynamic data.

5

Published as a workshop paper at ICLR 2022

A PRELIMINARIES

Here we provide background for the subsurface simulation. We consider the problem of subsurface
simulation of oil-water flow, which models how the pressure and saturation of fluids evolve over
time, given initial states, static properties of the rock, and external control variables such as injection
of water. Here we present a simplified Partial Differential Equation (PDE) for the system:

∂(ϕρjSj)

∂t
= ∇ · (ρj

µj
krj(Sj)k∇P) + qj (2)

Here j = w, o denotes different components/phases, with w for water and o for oil. Sj ∈ [0, 1] is
the saturation for phase j (saturation is the ratio between the present volume of component j and
the pore volume V the rock can hold at a location), and P is the pressure. ρj is phase density, µj is
the phase viscosity, and ϕ is the rock porosity. krj(Sj) is the relative permeability that is a function
of the saturation Sj , usually obtained via laboratory measurements. k is the absolute permeability
tensor. qj is the source/sink term, which corresponds to the injecting or producing of component j at
the well location. In this equation, the saturation Sj and pressure P are dynamic variables that vary
with time and space. ϕ, ρj , µj , k are static variables that are constant in time but typically vary in
space. The injection of water is externally controlled, and the production of water/oil qj at producer
wells is also a dynamic variable. We can intuitively understand this equation as follows: the change
of water/oil saturation Sj is due to two terms: the divergence of the flux Φj = − ρj

µj
krj(Sj)k∇P

and a source/sink qj term. The flux Φj is driven by the pressure gradient ∇P , where fluids flow from
places with higher pressure to those with lower pressure. Note that the coefficient krj(Sj) depends
on the dynamic variable Sj , making the dynamics nonlinear.

Eq. (2) is a simplified model. The problem we consider here is more challenging and high-
dimensional. Current (non-machine learning) approaches use implicit methods to evolve the sys-
tem, which involves solving a system of equations containing up to tens of millions of equations
(each cell of the discretized grid contributes one equation). Solving such a system can be slow
even after linearization. Moreover, in reality there are complex well configurations (vertical wells,
slanted wells, horizontal wells), faults planes in rock that reduce, divert or prevent fluid flow. This
in addition adds significant complexity to modeling and evolving the system in an accurate way. In
contrast, machine learning represents an attractive approach to alleviate these issues and develop
faster, more scalable and accurate simulators of such complex phenomena.

B MULTI-STEP ROLLOUT DURING TRAINING

A standard learning objective for learned simulation is to minimize the following Mean
Squared Error (MSE) on the 1-step prediction L = Et

[
ℓ(fθ(X

t, Q,R(X), U), Xt+1)
]

where
ℓ(X̂t+1, Xt+1) = (X̂t+1 − Xt+1)2. However, we find that even with a very small 1-step train-
ing loss, the multi-step rollout

X̂t+k+1 = fθ(X̂
t+k, Q,R(X̂t+k), U t+k), k = 0, 1, ...K (3)

can have a large error due to error accumulation. To improve long-term prediction, we develop
multi-step rollout during training. It performs multiple steps of rollout, and the loss is given by:

{
L = Et

[∑K
k=1 λk · ℓ

(
fθ(X̂

t+k, Q,R(X̂t+k), U t+k), Xt+k+1
)]

X̂t+k = fθ(X̂
t+k−1, Q,R(X̂t+k−1), U t+k−1), k = 1, 2, ...K

(4)

Here X̂t := Xt is the initial state for the rollout. The model fθ performs rollout autoregressively,
using the predicted X̂t+k as the next state’s input, and the loss is a weighted sum of loss on the
autoregressive predictions X̂t+1, ..., X̂t+K+1 for all rollout steps, weighted by weights λk. During
training, the backpropagation can pass through the full rollout steps, so that the model is directly
trained to minimize long-term prediction error. In practice, there is a tradeoff between computation
and accuracy. The larger the total rollout steps K in training, the better potential accuracy it can

6

Published as a workshop paper at ICLR 2022

achieve, but the more compute and memory it requires (scales linearly with K). We find that using
K = 4 strikes a good balance, which uses reasonable compute, achieves far better accuracy than
1-step loss, and there is minimal gain to further increase K. In our experiments, we use K = 4 and
(λ1, λ2, λ3, λ4) = (1, 0.1, 0.1, 0.1). The weights for the steps > 1 are smaller, since at the beginning
of training when the model is inaccurate, the multi-step loss is worse. Having a larger weight on
those steps would make the model not able to learn anything. Having 1-step loss dominates as we are
using helps the model to find a good minimum of the loss landscape first, and can further improve
by the multi-step part.

C FEATURES ENCODED

Table 3 shows all features we used for the experiments, consisting of dynamic, static, computed and
control features.

Table 3: Encoded dynamic, static, computed and control features for our HGNS model and com-
pared models. Here the node type one-hot encoding denotes whether a cell is a normal cell, injector,
producer. The boundary encoding is a 3-vector encoding if a cell is near the boundary of the full
grid, and has value ramping from 0 to 1 if it is from 5 to 1 cell distance from the boundary.

Dynamic features Xt Static features Q Computed features R(Xt) Control features U t

Pressure P Depth of cell Water relative permeability krw(Sw) Water injection rate qtw,inj

Water volume Vw Porosity ϕ Oil relative permeability kro(So) Pressure at injector location
Oil volume Vo Pore volume V Spatial gradient of dynamic features ∇Xt

Connate water volume Vwc

Permeability in x direction kx
Permeability in y direction ky
Permeability in z direction kz
Transmissibility in x direction Tx

Transmissibility in y direction Ty

Transmissibility in z direction Tz

Node type one-hot encoding
Boundary encoding

D HYPERPARAMETERS FOR HGNS

Table 4 shows the hyperparameter values used for HGNS.

Table 4: Hyperparameters used for HGNS

Parameter name Value
Number of GNLayers for the processor 2
Latent size for the processor 16
Activation elu
Type of nomalization Group normalization
Number of layers for each MLP 2
Convoluion type GNLayer
Number of neurons for each layer of MLP in the processor 128
Number of neurons for encoder MLP 128
Number of neurons for decoder MLP 128
Number of layers for encoder MLP 2
Number of layers for decoder MLP 2
Number of layers for the pooling and unpooling models 1
Number of groups for GroupNorm 2
Residual connection to use in GNN model None
Fluid decoder model MLP
Number of feature maps for first conv layer of U-Net encoder 32
Number of levels in the U-Net encoder/decoder path 3
Number of groups in U-Net group norm 2

7

Published as a workshop paper at ICLR 2022

The pressure model for HGNS uses 3D-U-Net (Çiçek et al. (2016)). We modify 3D-U-Net’s order
of operation such that for each convolution layer, it first performs 3D-convolution, then applies
activation (ReLU) followed by group normalization. We observe that this improves performance
compared to the default order of Conv → BN → ReLu.

Table 5 shows the general structure of the HGNS fluid model structure, as well as the detailed
structure for the node level MLP (MLPv) and edge level MLP (MLPe). The structure of MLPv and
MLPe in the two GNLayers are the same.

Table 5: HGNS fluid model structure

General structure Node MLP (MLPv) Edge MLP (MLPe)
Input: x Input: x Input: x
x = ELU(x) x = Linear(144, 128)(x) x = Linear(36, 128)(x)
x = GNLayer0(x) x = ELU(x) x = ELU(x)
x = GroupNorm(2, 16)(x) x = Linear(128, 16)(x) x = Linear(128, 128)(x)
x = GNLayer1(x)

E DETAILS FOR TRAINING

Table 6 shows the values of all hyperparameters used for training. The noise added refers to the
random walk noise added during training. As explained by Sanchez-Gonzalez et al. (2020), adding
random walk noise brings the training distribution closer to the distribution during prediction rollout.
The weight of cell refers to a weight we assign to different cells depending on their distance to a
well location. In cases where we want more accurate prediction results near well locations, we can
assign a higher weight to the cell near the well, and a gradually decreasing weight for cells further
away following some density function (e.g. Gaussian function).

F DETAILS FOR DATASET AND PRE-PROCESSING

The datasets we used for training consist of 16 different trajectories, and the test set consists of 4
different trajectories. Each trajectory is the evolution of a 85×220×60 grid, in the depth (vertical),
length and width direction, respectively, and spans over 61 times steps. Such grid size amounts to a
total of 1122000 cells.

We create an edge in the graph between edge valid cell and its valid neighbor. If either the cell or its
neighbor is an invalid cell, no edge will be created between this cell pair.

There can be a varying number of wells (producer or injector) in each trajectory, all between 5 and
10 in our dataset.

Table 6: Hyperparameters used for training
Parameter name value
Loss function MSE
Number of epochs 40
Batch size 1
Learning rate 0.001
Weight decay 0
Otimizer Adam
Optimizer scheduler cos
Noise added 3e-5

Weight of cell
Gaussian decay with std.=10,
minimum weight=0.2 and
weight=50 at well centers

8

Published as a workshop paper at ICLR 2022

REFERENCES

Flexible neural representation for physics prediction, 2018.

Hamid Bazargan, Mike Christie, Ahmed H Elsheikh, and Mohammad Ahmadi. Surrogate acceler-
ated sampling of reservoir models with complex structures using sparse polynomial chaos expan-
sion. Advances in Water Resources, 86:385–399, 2015.

Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger. 3d u-
net: learning dense volumetric segmentation from sparse annotation. In International conference
on medical image computing and computer-assisted intervention, pp. 424–432. Springer, 2016.

Luı́s Augusto Nagasaki Costa, Célio Maschio, and Denis José Schiozer. Application of artificial
neural networks in a history matching process. Journal of Petroleum Science and Engineering,
123:30–45, 2014.

Hamidreza Hamdi, Ivo Couckuyt, Mario Costa Sousa, and Tom Dhaene. Gaussian processes for
history-matching: application to an unconventional gas reservoir. Computational Geosciences,
21(2):267–287, 2017.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21), 2021.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International Confer-
ence on Machine Learning, pp. 8459–8468. PMLR, 2020.

Meng Tang, Yimin Liu, and Louis J Durlofsky. A deep-learning-based surrogate model for data as-
similation in dynamic subsurface flow problems. Journal of Computational Physics, 413:109456,
2020.

Kiwon Um, Robert Brand, Philipp Holl, Nils Thuerey, et al. Solver-in-the-loop: Learning from
differentiable physics to interact with iterative pde-solvers. arXiv preprint arXiv:2007.00016,
2020.

Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder–decoder networks for
surrogate modeling and uncertainty quantification. Journal of Computational Physics, 366:415–
447, 2018.

9

	Introduction
	Method
	Experiments
	Conclusion
	Preliminaries
	Multi-step Rollout During Training
	Features Encoded
	Hyperparameters for HGNS
	Details for training
	Details for dataset and pre-processing

