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ABSTRACT

We apply an interpretable Long Short-Term Memory (iLSTM) network for land-
atmosphere carbon flux predictions based on time series observations of seven
environmental variables. iLSTM enables interpretability of variable importance
and variable-wise temporal importance to the prediction of targets by exploring
internal network structures. The application results indicate that iLSTM not only
improves prediction performance by capturing different dynamics of individual
variables, but also reasonably interprets the different contribution of each variable
to the target and its different temporal relevance to the target. This variable and
temporal importance interpretation of iLSTM advances terrestrial ecosystem model
development as well as our predictive understanding of the system.

1 INTRODUCTION AND MOTIVATION

Machine learning (ML) models, Long Short-Term Memory (LSTM) networks [1] in particular, have
been demonstrated to improve predictions of carbon fluxes between atmosphere and land [2; 3; 4].
LSTM networks, trained over multivariable time series consisting of exogenous and target variables,
capture nonlinear correlation of historical values of environmental drivers and carbon fluxes to predict
future carbon fluxes. LSTM models learn system patterns and dynamical behaviors from time series
observations; they are not necessarily constrained by the principle of mass, energy conservation or
governing equations that describe the carbon cycle related processes a priori. Thus, despite successful
applications in terrestrial ecosystem modeling, LSTM models have been criticized for their lack of
interpretability [5; 6]. An interpretable ML model should not only provide accurate predictions but
also capture the dynamical interdependency between the variables. It should be able to explain, for
the carbon flux variable, what are the most important environmental drivers, and at which time scales
the environmental drivers have strong impact on the carbon flux estimation? This interpretability
on variable importance and variable-wise temporal importance is crucial for improving carbon flux
predictions and predictive understanding of the ecosystem.

To achieve interpretability, some studies performed sensitivity or permutation analysis on trained
LSTM networks to explain the relative importance of inputs to the outputs [7; 8; 9; 10]. However,
this post-hoc interpretability method cannot explain what the model learned in the training process.
Realizing the challenges in interpretation of the black-box networks, some studies revert to under-
standable but non-dynamic ML models such as random forest [11; 12]. However, random forest
models have shown inferior performance to LSTM networks, and they cannot learn the temporal
dependency between environmental variables and carbon fluxes [13; 3]. So essentially this strategy
of applying non-dynamic ML models sacrifices prediction accuracy for predictive interpretability.

In this work, we focus on an interpretable LSTM (iLSTM) method for time series prediction. It
explores internal structures of the LSTM network and overcomes the opacity of its hidden states for
inherent interpretability. iLSTM jointly learns network parameters, variable and temporal importance
with respect to the target prediction. It not only produces an accurate prediction but more importantly
provides interpretable insights into the data, which advances our understanding about the influence of
environmental variables and their temporal influence on the target predictions. We apply iLSTM to
the Morgan Monroe State Forest (MMSF) in central Indiana to learn the importance of seven environ-
mental variables to net ecosystem CO2 exchange (NEE, a carbon flux variable). We evaluate iLSTM
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prediction performance by comparing it with the standard LSTM, and we justify the interpretability
of iLSTM through a series of designed numerical experiments.

The main contributions of this work are:

1. We apply an interpretable LSTM for NEE prediction to understand the importance of environmen-
tal drivers and their temporal importance to NEE by exploring the network internal structures. This
presents a major advancement from previous studies that either lacked importance interpretation
or used ad-hoc sensitivity or permutation analysis for a limited explanation.

2. We identify the environmental drivers exhibiting high importance to NEE and their temporal
relevance to NEE. This investigation is important for understanding different driver’s effects on
carbon fluxes and the different memory effects of individual variables.

3. We justify the interpretability of iLSTM and the insights gained from the variable importance
help variable selection in modeling and advance terrestrial ecosystem model development.

2 INTERPRETABLE LONG SHORT-TERM MEMORY NETWORKS

LSTM network is specifically designed to learn the dynamic temporal dependence structure within
the data. Its hidden states dynamically add and store memory from the multiple input sequences to
infer the output. Standard LSTM models blindly blend the information of all input variables into the
hidden states used for prediction. It is therefore difficult to distinguish the relative contribution of
individual inputs to the output, and the mixed multi-variable data in the hidden states neglect the
different dynamics of the individual input sequence [14]. In this work, we introduce an interpretable
LSTM (iLSTM) [15] for accurate prediction and importance interpretation.

iLSTM enables interpretability by exploring the internal structure of LSTM networks. First, it enables
hidden states to encode individual variables, such that the contribution from individual inputs to
the prediction can be distinguished. For example, the standard LSTM uses a hidden state vector to
summarize the input information (where the vector length is the neuron size of the hidden layer). In
contrast, iLSTM uses a hidden state matrix which includes D rows of the standard hidden vector;
each row encapsulates information exclusively from one of the D input variables. Second, iLSTM
uses a mixture attention mechanism to summarize the variable-wise hidden states and jointly learns
the network parameters for prediction and the importance weights for interpretation. Specifically,
temporal attention is first applied to the sequence of hidden states corresponding to each input
variable, in order to obtain the summarized historical information of each input time series. Then
variable attention is derived to merge the variable-wise states. Next, we assemble the temporal
attention weights and variable attention weights into a probabilistic mixture model for learning [16]
to calculate the temporal and variable importance weights. The structure of iLSTM is analogue to
a set of parallel standard LSTMs, each of which processes one variable series and then merges via
the mixture attention mechanism. By learning both the temporal and variable attention weights in
the training, iLSTM largely leverages each input sequence’s information for prediction and captures
their individual dynamics. Therefore, iLSTM can not only achieve accurate prediction by optimizing
the learning, but also enables interpretability by calculating the variable and temporal importance.
The variable importance weights β (sum to one) reflects the relative importance of the corresponding
inputs with respect to the target output. For each input variable, the temporal importance weights α
(sum to one) explains the relative importance of the time instant of that variable to the prediction.

3 TERRESTRIAL ECOSYSTEM PREDICTION

The dataset is from the Morgan Monroe State Forest (MMSF) in south-central Indiana, which
represents one of the most comprehensive records of leaf- and canopy-scale processes in a mature
forest collected in situ [17]. The MMSF is a managed deciduous broadleaf forest where the lands
are dominated by woody vegetation with a percent cover >60% and height exceeding 2 meters. It
consists of broadleaf tree communities with an annual cycle of leaf-on and leaf-off periods. The
average age of the trees are 80-90 years. Since 1998, a 46-m AmeriFlux tower has been operating
continuously at MMSF [18] for collecting eddy covariance fluxes and meteorological data. The
time series dataset includes NEE (gCm−2d−1) and seven environmental drivers, i.e., nighttime
temperature (Tn (deg C)), daytime temperature (Td (deg C)), shortwave radiation (Ra (Wm−2)),
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vapor pressure deficit (VPD (hPa)), precipitation (P (mm)), soil water content (SWC (%)), and
atmospheric CO2 concentration (CO2 (ppm)) at a daily timescale from 1999 to 2014.

Our purpose here is to use iLSTM to learn and interpret the relationship between the seven environ-
mental drivers and NEE for the NEE prediction. The multiple environmental variables carry different
patterns (see Figure in Appendix A). Properly modeling individual variables and their interactions is
crucial for accurate prediction and understanding of NEE dynamics. The two temperature variables,
Tn and Td, have more similar patterns with NEE, and theoretically they would have more impact
on NEE compared to other environmental features. The climate in MMSF is humid subtropical,
mild with no dry season and has hot summers. Year 2012 is anomalous; it is a dry year with the
annual total precipitation of 782mm which is 631mm less than the wet year of 2008. A warm
and dry spring caused an abnormally early start to the growing season in 2012. The date at which
weekly averaged NEE first crossed zero (meaning a switch from a net source to a net sink of CO2

by the ecosystem) in 2012 occurred about 3 weeks earlier than average. The pattern of enhanced
CO2 uptake in the spring reversed in the summer to reduced CO2 uptake compared to other years.
During the peak of the growing season, the absolute value of measured NEE (sum of hourly fluxes
for July up to and including mid-August) in 2012 was reduced by 102gC, or 55%, relative to baseline
(1999–2010) mean NEE. In the iLSTM simulation, we use the first 11 years (i.e., 1999-2009) of data
for training and the remaining 5 years of data (i.e., 2010-2014) for out-of-sample testing. The details
of training are summarized in Appendix B. Given the lack of extremely dry years in the training data,
the different NEE dynamics in 2012 from the training data may cause challenges in prediction.

4 RESULTS AND DISCUSSION

We first evaluate prediction performance and then assess the interpretability of iLSTM by analyzing
the temporal and variable importance. Next, we quantitatively evaluate the efficacy of variable
importance through lens of numerical experiments design. The prediction performance of iLSTM is
evaluated in comparison with the standard LSTM. We consider two evaluation metrics, coefficient of
determination (R2) and root mean squared error (RMSE) which are defined in Appendix B.

Figure 1 shows the prediction of the standard LSTM and iLSTM in the testing period. iLSTM
produces a high R2 value of 0.82 which suggests that iLSTM learns the seasonal pattern of NEE very
well, including a model of leaf phenology that is a strong control on carbon cycling in deciduous forest
systems. Additionally, iLSTM performs better than the standard LSTM both over the five testing
years and for the individual years. A closer examination of the dry year 2012 shows that iLSTM can
accurately simulate the abnormally early start of the growing season while LSTM underestimates the
NEE values in April and does not accurately capture the timing and magnitude of reduced uptake in
late summer that is caused by the water shortage. The superior performance of iLSTM in simulating
NEE, especially in an abnormal event, is attributed to its capability of learning the relative importance
of each inputs and their dynamics of the importance over time with respect to the prediction.

iLSTM not only produces good prediction performance but also empowers the interpretability on
variable importance and temporal importance. Figure 2(a) depicts that variables Tn, Td, and Ra are
recognized as the most important drivers for NEE estimation, followed by a less relevant P and SWC,
and a much less significant VPD and CO2. Figure 2(b) illustrates the importance of considering
memory in the system and additionally indicates that these important variables have different patterns
in the temporal importance of the last 60 days which are used to predict the NEE at the current
day. For example, the two temperature variables, Td and Tn, have relatively long-term correlation
to NEE and the short-term data of Ra contributes relatively more to the NEE prediction. These
variable and temporal importance analysis is in line with our domain knowledge. The study site
MMSF is a deciduous forest where the carbon flux is normally more sensitive to temperature than to
water, and the temperature can have a long-term memory effect on NEE [3]. The radiation variable
Ra affects latent and sensible heat fluxes and also has an impact on carbon fluxes by controlling
photosynthetic uptake at shorter time scales. This interpretability of iLSTM in variable and temporal
importance can guide terrestrial ecosystem model development. Process-based terrestrial ecosystem
models implement environmental variable related processes and specifies the physics that consider
the memory effect of the environmental drivers to the carbon fluxes. From the prediction analysis
of iLSTM, we can gain insights about which environmental features are more important and which
variable has a stronger memory effect on NEE. The iLSTM network may eventually also be applied
to model output to better understand whether model equations and assumptions lead to consideration
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Figure 1: Comparing prediction performance of NEE between iLSTM and the standard LSTM in testing period.

Figure 2: (a) Variable importance β measures the relative importance of the seven environmental variables to
NEE and (b) temporal importance α measures relative contribution of the time steps of a certain variable to the
NEE prediction. The larger the value, the higher the importance.

of memory effects that are consistent with the observations. Such information is crucial to guide
process development and physics implementation in terrestrial ecosystem models and to advance our
predictive understanding of the system.

To quantitatively evaluate iLSTM’s efficacy of variable importance, we design four new models for
NEE prediction based on iLSTM suggested variable selections. Table 1 describes these four new
models along with the original model that considers all the input variables. We make the following
comparisons between the five model setups.

• Comparing Model I and II evaluates iLSTM’s efficacy of variable importance. Similar results
would suggest that iLSTM can accurately identify the important variables for NEE prediction.

• Comparing Model II and III investigates the influence of two water-related variables, P and SWC,
on NEE prediction. If the two models produce different results in dry year of 2012, it will suggest
that P and SWC are important to estimate NEE dynamics in drought seasons.

• Instantaneous values of SWC already include memory effects of precipitation and water use by
the ecosystem; therefore comparing Model IV to V tests whether iLSTM can effectively learn
a soil hydrology model without SWC by considering memory effects of precipitation and other
drivers that are relevant for carbon fluxes. If the two models produce similar results, it will suggest
that we may be able to use observations of P instead of SWC to predict NEE. Observations and
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reanalyses of P are readily available while reliable SWC data are sparse and usually involve large
measurement errors due to spatial heterogeneity.

Table 1: Comparison of iLSTM prediction performance on NEE between five models which use different input
variables. R2 and RMSE are calculated for the entire testing period (2010-2014) and the dry year 2012.

Comparison results are summarized in Table 1 and detailed performance is shown in Figure 4 of
Appendix C. First, Model I and II have minor difference in the prediction performance. This finding
justifies iLSTM’s effectiveness in variable selection. It suggests that among the seven inputs, Tn,
Td, Ra, P, and SWC are sufficient to make a good prediction of NEE, and inputs of VPD and CO2

bring too little new information to significantly boost the prediction in the MMSF ecosystem. This
effective variable selection of iLSTM not only reduces the requirement of training data but also
enhances cause-effect process understanding. Second, Model II and III produces similar R2 and
RMSE over the entire testing period. But for the dry year of 2012, Model III, which does not consider
water-related inputs such as P and SWC, shows worse prediction than Model II with a lower R2

and a higher RMSE. This suggests that the water-related variables are critical for NEE estimation
in drought. iLSTM realizes the importance of P and SWC by giving them a relatively high weight
(Figure 2(a)), but meanwhile their weights are relatively small compared to those of the temperature
inputs Tn and Td which are generally more important to NEE in all the seasons and the importance
of P and SWC is particularly reflected in drought event. Third, Model IV and V presents similar
prediction performance in both entire testing period and in year 2012, which indicates that including
either P or SWC results in comparable NEE prediction. This finding is significant. It is known that
SWC relates to vegetation functioning and therefore NEE more directly than P. Plant growth and
development directly depend on SWC and plant water uptake. Sometimes, rainfall records can be
misleading as intense precipitation events do not always result in a proportional increase of SWC
either because of low infiltration rates or a relatively small soil water holding capacity. Additionally,
the occurrence of precipitation is not always associated with the onset of the vegetation growth,
exhibiting lags of several weeks and even months. The similar prediction of NEE from SWC or P
suggests that our trained iLSTM includes an accurate model of how soil hydrology impacts NEE
learned implicitly from the precipitation data and its different temporal relevance to the carbon flux.
We will investigate this point further in future studies.

5 CONCLUSION AND FUTURE WORK

Incorporating ML into earth sciences is not only for improvement of prediction but more importantly
for enhancing predictive understanding. In this work, we apply an interpretable LSTM network
for NEE prediction. The iLSTM model not only results in an accurate prediction of NEE by
capturing different dynamics of individual environmental drivers, but also interprets the relative
importance of these drivers to NEE as well as their timescales of influence. This insight into ecological
dynamics guides the process-based terrestrial ecosystem model development. Leveraging the iLSTM
interpretability alongside model hypothesis testing, we can determine the process mechanisms about
the effective drivers and their legacies of past events on carbon fluxes.

This study is the first and important step towards understanding the sensitivity of global terrestrial
ecosystems to environmental variability. In the future, we will apply iLSTM to a variety of forest
sites with different plant functional types to explore the distinct variable importance and memory
effects from both climate and vegetation in quantifying spatio-temporal variations in forest NEE.
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APPENDIX

A OBSERVATION DATA

The following Figure 3 shows the daily data of the seven environmental variables and NEE in 1999
to 2014 which are used in the LSTM simulation.

Figure 3: Daily data of the seven environmental variables and NEE in 1999 to 2014 where the vertical line
separates the training period (1999-2009) and the testing period (2010-2014).

B MODEL DETAILS AND EVALUATION METRICS

In all the numerical experiments, we used a single layered LSTM network with 50 hidden neu-
rons. The Adam optimizer [19] was used to minimize the mean squared error loss function with a
learning rate of 0.001. The look-back window size was set to 60 days according to [20] and after
hyperparameter tuning.

We consider two evaluation metrics, the coefficient of determination (R2) and root mean squared
error (RMSE).

R2 = 1−
∑N

i=1

(
Y obs
i − Y sim

i

)2∑N
i=1

(
Y obs
i − Y

obs)2 (1)

RMSE =

√∑N
i=1

(
Y obs
i − Y sim

i

)2
N

. (2)

where Y obs
i is the ith observation, Y sim

i is the ith simulated value, Y
obs

is the mean of observation,
and N is the total number of observations. R2 is a normalized statistic that determines the relative
magnitude of the residual variance compared to the observation variance. It indicates how well the
plot of observed versus simulated data fits the 1:1 consistency line. R2 value ranges from negative
infinity to 1. A value of 1 corresponds to a perfect match of model simulations to observations, and a
negative R2 indicates that the model performs worse than the observed mean. RMSE measures the
estimation errors in squared sense; its value varies from the optimal 0 to a large positive number. The
lower RMSE and the better the model simulation performance.
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C PREDICTION PERFORMANCE OF DIFFERENT MODELS

This section presents visualizations of the prediction performance of the models II, III, IV, and V in
Table 1.

Figure 4: Prediction performance of NEE between different iLSTM models in Table 1.
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