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ABSTRACT

Deep Learning (DL) has recently emerged as a promising Empirical Statistical
Downscaling perfect-prognosis technique (ESD-PP), to generate high-resolution
fields from large-scale climate variables. Here, we analyze two state-of-the-art
DL topologies for ESD-PP of different levels of complexity over North Amer-
ica. Besides classical validation leaning on accuracy metrics (e.g., Root Mean
Squared Error (RMSE)), we evaluate several interpretability techniques to gain
understanding on the inner functioning of the DL models deployed. Taking as ref-
erence the RMSE both topologies show similar values. Nonetheless, by analyzing
the resulting interpretability maps, we find that the simplest model fails to cap-
ture a realistic physics-based input-output link, whilst the complex one describes
a local pattern, characteristic of downscaling. In climate change scenarios, where
weather extremes are exacerbated, erroneous patterns can lead to highly biased
projections. Therefore, including interpretability techniques as a diagnostic of
model functioning in the evaluation process can help us to better select and design
them.

1 INTRODUCTION

Global Climate Models (GCMs) are the most advanced tools available to simulate the evolution of
the climate several decades into the future (climate prediction). Nonetheless, due to computational
and physical limitations the outputs of these models have a typical resolution of hundreds of kilome-
ters and do not accurately represent the regional-to-local climate variability. Regional information
is required by policy makers and stakeholders to develop their adaptation plans in different future
climate scenarios. To bridge this gap, several Empirical Statistical Downscaling (ESD) (Maraun
& Widmann, 2018) methods have been proposed to learn an empirical relationship between a set
of low-resolution variables (predictors) and the regional variable of interest (predictand). Under
the perfect-prognosis approach (ESD-PP), the statistical models are trained following a supervised
learning approach —i.e., there is a temporal synchrony between the input and output fields,— lean-
ing on observational datasets for both the predictor (e.g reanalysis data) and the predictand (e.g.,
gridded observations interpolated from in-situ measurements) to infer the models.

Recently, Deep Learning (DL, (Goodfellow et al., 2016)) topologies have emerged as a promising
ESD-PP technique, showing satisfactory performance to reproduce the observed local climate (Pan
et al., 2019; Baño-Medina et al., 2020; Sun & Lan, 2021). Nonetheless, these models are still
seen as black boxes in climate science, given the difficult interpretation of their inner functioning.
This problem could be tackled with recent studies proposing interpretability techniques (Campos-
Taberner et al., 2020; Toms et al., 2021; Dikshit & Pradhan, 2021). However the application of these
techniques in the downscaling context is still incipient, with some promising results (Baño-Medina,
2020) proving that Convolutional Neural Networks (CNN, (LeCun et al., 1995)) are able to identify
the relevant predictors and the spatial regions of influence thus performing some kind of automatic
predictor selection in their hidden layers.
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Here, we evaluate several interpretability techniques applying them to different DL models for the
ESD-PP problem and show how the resulting information can be used as a diagnostic of model
functioning, facilitating the interpretation of results and assisting in the identification of problems.
We move beyond previous studies dealing with “medium” size domains (e.g., Europe) and test the
performance of two state-of-the-art ESD-PP DL topologies of different complexities over a broad
area with a strong latitudinal gradient: North America.

2 DEEP LEARNING MODELS FOR STATISTICAL DOWNSCALING

In this work we study two different CNN models with different topology previously introduced in
the literature. This allows evaluating the sensitivity of the interpretability techniques for changing
model complexity.

2.1 CNN10

(Baño-Medina et al., 2020) presented the first intercomparison downscaling experiment of DL
topologies for ESD-PP. Following their results we adapt their best performing topology for the case
of temperature (CNN10) to our study. This model is composed of three convolutional layers with
50, 25 and 10 kernels of size 3x3 and rectified linear units (ReLU) as activation function (Agarap,
2018). The output of the last convolutional layer is flattened and passed to a fully connected layer
with linear activation function, whose neurons output the value for each of the gridpoints of the
predictand. Despite being a simple model, authors demonstrate its overall good performance as its
adaptation to out-of-domain conditions at a continental scale over Europe.

2.2 UNET-FC

In (Gadat et al., 2021) authors estimate the downscaling function of a Regional Climate Model
(RCM) for the near-surface temperature of a specific domain in Western Europe. For this, they train
a U-Net network (Ronneberger et al., 2015) that learns the relationship between large-scale variables
and local-scale downscaled fields. This topology is composed of two different paths: the encoder
and the decoder. The former takes the input and reduce its dimension, while the latter transforms the
image back to desired size. A connecting path within the network keeps the encoder and decoder
connected.

Based on the results of (Gadat et al., 2021) we adapt this topology to our study. The encoder of our
model is formed by a succession of five blocks with a convolution, batch normalization and max
pooling layer each –except the last block which does not have max pooling– with 64, 128, 256, 512
and 1024 filter maps respectively. The decoder is composed of four blocks formed by a transpose
and a standard convolution –apart from the corresponding concatenation layers– of 512, 256 128
and 64 filter maps. Finally, two transpose convolutional layers and a succession of 6 convolutional
layers with 64 filter maps are applied in order to get to the desired output dimensions. As activation
function we use ReLU. The absence of fully connected layers made this model fully-convolutional.
Notice how, unlike CNN10, this model is composed of a substantially more complex topology.

3 INTERPRETABILITY TECHNIQUES

Interpretability of DL models is still an emerging field in climate sciences. However several tech-
niques have been tested successfully over a wide range of topologies (Simonyan et al., 2013; Zeiler
& Fergus, 2014; Ribeiro et al., 2016). We select and apply three different techniques: layer-wise
relevance propagation (LRP) (Bach et al., 2015), SmoothGrad (Smilkov et al., 2017) and guided
backpropagation (Springenberg et al., 2014). We use the open-source library innvestigate (Alber
et al., 2019) to implement them.

These methods assess the importance of the features of a model –pixels in the case of images–
using saliency maps. These representations assign to each feature a relevance score representing its
influence on the computed prediction. Different techniques use distinct approaches to compute these
saliency maps. LRP recursively traces backwards the output of a neural network onto the space of
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the input, identifying relevant patterns. Differently, SmoothGrad and guided backpropagation rely
on the computation of the gradient of the output with respect to the input.

4 REGION OF STUDY AND DATA

Here we follow the experimental downscaling framework introduced in previous studies (Baño-
Medina et al., 2020). In particular, we select as predictors 5 large-scale variables (geopotential
height, zonal and meridional wind, air temperature, and specific humidity) at 4 different vertical
levels (1000, 850, 700, and 500 hPa, ranging from altitudes from near surface to 5000 meters)
from the ERA-Interim reanalysis (Dee et al., 2011) (trimmed to a horizontal resolution of 2◦), over
the region of North America (12◦ to 70◦ in latitude and -165◦ to -60◦ in longitude). This set of
predictors characterizes the atmospheric configuration corresponding to a particular day. For the
target predictand, we lean on the daily land near-surface air temperature over the regular gridded
0.5◦ EWEMBI dataset (Lange, 2019) over North America. Both datasets provide daily information
for the period 1980-2008.

ERA-Interim data can be downloaded from the ECMWF website 1 and EWEMBI is available at
ISIMIP 2.

5 EXPERIMENTS

The models are trained using ERA-Interim and EWEMBI datasets as low and high-resolution (in-
put/output) pairs. The predictors variables are standardized, stacked as channels and passed to the
input layer of the DL models. Models are fitted in a training set covering the period 1980-2002
by minimizing the Mean Squared Error (MSE). To avoid overfitting we follow an early stopping
strategy on a random 10% split of the training set. The evaluation of these models is performed on
a test set spanning the period 2003-2008.
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Figure 1: Mean (left) and standard deviation (right) of daily near-surface air temperature for the train
period (1980-2002). Values for each of the Intergovernmental Panel on Climate Change (IPCC)
reference regions (Iturbide et al., 2020) are also shown.

Note that both models try to learn the downscaling task over the full region of North America. This
continent extends from the Arctic Circle to the tropics, thus suffering from an extreme latitudinal
climate gradient. Figure 1 shows the mean and standard deviation of the temperature (predictand)
for the train period. Mean temperature covers a wide range –from almost -20◦C in the north to
20◦C in the south–, and the standard deviation goes from values near 5◦C in the south to almost
15◦C in the north. To avoid potential spatial inhomogeneity caused by this variability, we develop a
variant of CNN10 called CNN10-Stand in which the predictand is also standardized. This will allow
us testing the effects of balancing the variability of the temperature across northern and southern
regions.

Figure 2 shows the spatial distribution of the test RMSE for the different models over North Amer-
ica, as well as its seasonal evolution regarding the different IPCC reference regions. Note that
the standardization required for CNN10-Stand is reversed when calculating the predictions, taking

1https://www.ecmwf.int/
2https://www.isimip.org/
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Figure 2: (left) Spatial distribution of the test RMSE (◦C) for the different models (in rows): UNet-
FC CNN10 and CNN10-Stand. (right) Mean seasonal test RMSE annual, summer, winter, autumn
and spring values –in black, red, blue, brown and green, respectively– for the different IPCC regions
(sorted from north to south and from west to east).

as reference the mean and standard deviation of the training set. UNet-FC is the best performing
model, closely followed by CNN10, while CNN10-Stand shows the worst RSME values. It can be
seen that for all the models the RMSE is higher in the northern regions, decreasing southwards. The
RMSE across seasons is similar for all models, with the best results obtained in summer and the
worst in winter.

In order to understand the role of the different spatial predictors and gain interpretability of the
results, we computed the saliency maps for these models applying the three techniques previously
mentioned. These are computed for each specific downscaled gridpoint (a certain output neuron)
and normalized so the most influential value (a particular predictor for a particular gridpoint) takes
value 1.

We have computed the mean of saliency maps for different samples –winter and summer days, full
test set, month across years, etc.– observing no significant variations of the results. For CNN10 and
CNN10-Stand, the three techniques (LRP, SmoothGrad and guided backpropagation) produce simi-
lar results. However, LRP fails to produce interpretable saliency maps for UNet-FC, while Smooth-
Grad and guided backpropagation reach similar results. This could be due to the greater complexity
of the UNet-FC compared to the CNN10 models, which hampers the backward propagation of the
output signal required for LRP. Due to the nature of SmoothGrad –mean gradient across variations
of the same sample– it takes longer to compute than guided backpropagation. Therefore, the results
for this latter technique are illustrated in the following.

Air temperature resulted the most influential predictor (in agreement with previous studies (Baño-
Medina, 2020)) followed by specific humidity. Figure 3 shows the saliency maps for two different
gridpoints (located in North and South extremes of the domain) for all the models. These are calcu-
lated with the samples corresponding to December across the years spanned in the test set.

For UNet-FC, the saliency maps show that, as expected, the models rely on a local region over the
nearest input gridpoint. Humidity is particularly relevant in the North, but not in the South (where
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Figure 3: Mean normalized saliency maps for December observations of the test set (2003-2008)
with guided backpropagation. For each model (rows) the saliency map of air temperature and spe-
cific humidity at 1000 hPa is shown for two different points (north and south), in columns.

it has smaller variability). These results provides a physical basis for the model functioning, thus
enhances its credibility.

CNN10 achieves similar results to UNet-FC in terms of RMSE in both south regions. However, for
the CNN10 model the saliency maps reveal a non-local pattern for the southern point, which can
not be framed within a physics-based interpretation and thus indicates a potential problem with this
method. This could be the effect of the smaller variance of the predictand over this regions. This
is confirmed analyzing the results of CNN10-Stand (where the outputs are standardized and thus,
all regions have the same weight in the error function). The saliency patterns become local, but the
performance of the model is deteriorated due to the scaling factor which scales both the signal and
the noise (smaller variability in tropical regions).

6 CONCLUSIONS

In this work we have analyzed different DL topologies for ESD-PP in the region of North America.
These topologies, previously introduced and validated in the literature, represent different levels
of complexity. Both models were previously introduced over Europe, CNN10 being applied at a
continental scale. Three different interpretability techniques have been applied, all of them drawing
the same conclusions about their underlying behaviour.

The saliency maps show how UNet-FC, the most complex model, learns a predictors-predictand link
with a significant local pattern, a characteristic aspect of the downscaling task. CNN10, the simple
model, learns a spurious relationship for the south regions which does not fit within a physics-based
framework. However, the failure of CNN10 to learn this link was not reflected in the RMSE over
the test period. This failure is caused by the extreme latitudinal climate gradient, which can not be
learnt by the CNN10 model. By standardizing the predictand we see that the CNN10 manages to
learn a plausible relationship; however, it is still unable to correctly adapt to the extreme weather of
North America, as its RMSE shows. Taking as reference the RMSE, the CNN10 model would be
valid for downscaling; however, when studying it also from an interpretability point of view, we see
how it does not learn the authentic predictors-predictand relationship behind the downscaling task.

In climate change scenarios, where weather extremes are exacerbated, erroneous patterns can lead to
highly biased projections. Including interpretability techniques in the evaluation process can help us
to better select and design them, especially when applied to large continental regions with extreme
climate gradients.
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