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ABSTRACT

High resolution remote sensing imagery is used in a broad range of tasks, in-
cluding detection and classification of objects. It is, however, expensive to obtain,
while lower resolution imagery is often freely available and can be used for a range
of social good applications. To that end, we curate a multi-image multi-spectral
dataset for super-resolution of satellite images. We use PlanetScope imagery from
the SpaceNet-7 challenge as the high resolution reference and multiple Sentinel-2
revisits of the same location as the low-resolution imagery. We provide baselines
for both single image super-resolution and multi-image super-resolution. We also
provide an ablation on how number of scenes, cloud cover and dynamism in dif-
ferent scenes in the dataset affect performance. Finally, we provide our code to
obtain construct the dataset along with implementations of baselines for the com-
munity to build upon.1

1 INTRODUCTION

Generative Deep Learning has sparked a new wave of Super-Resolution (SR) algorithms that en-
hance the spatial resolution of images with impressive aesthetic results (Wang et al., 2020). Although
the perceptual quality of those images is high, it is well-known that some of these SR models intro-
duce artefacts into the SR image that are not present in real images (Bhadra et al., 2020). This limits
the applicability of SR models to domains such as remote sensing where the safety and consistency
are critical, e.g. for scientific instrumentation and decision making.

Super-resolution models can be divided in single-image super-resolution (SISR) and multi-image
super-resolution (MISR) (aka multi-frame or multi-temporal super-resolution). The former uses
as input only one low-resolution image while the later takes several low-resolution images from
the same scene. MISR seeks to further constrain the ill-posed problem of SR by conditioning on
several low-res input images (aka revisits). Therefore, it is expected of MISR to produce better
SR images, to be more robust, and to produce fewer artefacts than SISR. In addition, MISR can
be naturally applied in Earth observation since satellites often have frequent revisits of an area of
interest. These multiple revisits can be fused with MISR to produce a super-resolved image. Despite
its clear applicability, MISR has been scarcely applied in Remote Sensing and, as of yet, there are no
studies that quantitatively compare MISR and SISR. Thus far, for remote sensing, MISR has been
demonstrated only on RED and NIR bands of PROBA-V –a tiny fraction of the Sentinel-2 operation
spectrum (Deudon et al., 2020).

In this paper, we introduce a dataset of multi-spectral multi-temporal satellite imagery from the
European Space Agency’s Copernicus Sentinel-2 (S2) archive, to test MISR. In particular, we train
super-resolution models (both SISR and MISR) on the 10m RGB bands of Sentinel-2 images, using
as reference co-registered 4.77m RGB PlanetScope images, acquired within the same two-month
period. This setting differs from the vast majority of previous remote sensing applications of SR,
where low-res images are obtained by artificially downsampling the high-res counterpart (Shermeyer
& Van Etten, 2019). The main benefit of our setting is that the trained model can be applied on new

1Available at SpaceML.org
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Figure 1: Different co-registered acquisitions from PlanetScope and Sentinel-2 from the SpaceNet
7 dataset. First row: PlanetScope RGB. Second and third rows: Sentinel-2 RGB revisits.

S2 RGB images to enhance their nominal resolution to 4.77m, i.e. it provides out-of-sample SR
results without requiring simultaneous and co-registered VHR images. In addition, we provide
baselines of not only MISR, but also SISR models on this dataset, in sec. 4.

The contributions of our work are summarized as follows:

1. We curate a new multi-temporal dataset from many revisits of Sentinel-2 imagery co-
located with PlanetScope imagery, originally sourced from the SpaceNet-7 competi-
tion (Van Etten et al., 2021), which includes a geodiverse set of scenes from around the
globe.

2. We present baseline results for both MISR and SISR on this dataset, along with some
ablations of the dataset.

3. The code to construct similar datasets from Sentinel-2, along with the code to run the
baselines on this dataset, is to be made publicly available.

The new multi-temporal dataset of Sentinel-2 and PlanetScope imagery, and the training, validation
and test sets used in the experiments are presented in section 2. Section 3 describes the single-image
and multi-image super-resolution methods analyzed in this work. Finally, the results of the baselines
on the dataset in section 4.

2 DATASET

In order to learn a supervised super-resolution model to improve the spatial resolution of S2, we
need higher-resolution images to be used as a reference. Since VHR (Very High Resolution) im-
ages (less than 10m) are not freely available, we restricted our search to pre-released publicly-
available datasets of high-resolution images. Among those, we chose the recently launched Multi-
temporal urban development SpaceNet dataset of PlanetScope images (also known as SpaceNet-7,
see sec. 2.1) (Van Etten et al., 2021). Given this dataset, we acquired co-located time series of
Sentinel-2 images for each PlanetScope acquisition (sec. 2.2). Subsection 2.3 has a brief analysis
of the S2-Planet dataset as well as details about the different train-test splits that we used for the
results.

2.1 PLANETSCOPE SPACENET-7 DATASET

SpaceNet-7 (Van Etten et al., 2021) has monthly time series of PlanetScope images over a two-year
time span period for approximately 100 different areas of interest (AOI) all over the world (see Fig-
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Figure 2: Location of SpaceNet-7 image time series. Figure taken from Van Etten et al. (2021).

ure 2). Images are provided at 4.77m nominal2 resolution with only three spectral channels (RGB)
and size around 1000 × 1000 pixels. These images were sourced from Planet’s global monthly
basemaps which are mosaics of best scenes selected according to some quality metrics from Plan-
etScope Dove constellation as covered in Van Etten et al. (2021). Image values range from 0 to
255 and there is no information on the calibration or atmospheric correction of those images. In this
study, we restricted to images from December 2019 and January 2020 from the training set (building
footprints in the test set have not been released). In total there are 45 different PlanetScope scenes
for each month.

2.2 SENTINEL-2 ACQUISITIONS

The Sentinel-2 mission consists of two twin satellites carrying the same multi-spectral optical sensor
which acquires images on 13 different bands of the electromagnetic spectrum, from the visible to
the short-wave infrared. The nominal spatial resolution of those images is different for each set of
bands: 4 bands (visible and near infra-red) have 10m resolution; 6 bands in the very near infrared
and short-wave infrared have 20m resolution, and the remaining 3 bands, which are used mainly
for atmospheric correction, have a spatial resolution of 60m. Level 2A Sentinel-2 products consist
of atmospherically corrected ortho-rectified 12-band images with bottom-of-atmosphere (BOA) cal-
ibrated reflectance. These images were downloaded from the European Space Agency (ESA) Open
Access Hub. In order to obtain co-aligned time series of Sentinel-2 and PlanetScope images, we
developed a custom pipeline which consists of the following steps:

1. Download all Sentinel-2 level 2A products overlapping with each of the 45 PlanetScope
scenes over December 2019 and January 2020.

2. Crop all Sentinel-2 images to the PlanetScope scene bounds.

3. Reproject all bands of S2 to the coordinate reference system of PlanetScope products at
10m spatial resolution.

4. When more than one S2 product was found for the same date and scene, we mosaiced those
images.

2.3 DATASET ANALYSIS AND TRAINING SPLITS

The images come from 45 locations, with a geodiverse set of features including vegetation, bare
soils (flats, hills, ridges), desert, urban, and agriculture infrastructure (see Appendix Table 3). The
number of revisits between December 2019 and January 2020 range from 5 to 13 and the percentage
of usable revisits (< 50% cloud coverage) ranges from 23% to 100%.

2.3.1 TRAINING, VALIDATION AND TEST SETS SPLITS

A well-thought split of the data into training and testing is critical to demonstrate the capacity of
machine learning models to generalize. In remote sensing scenarios, extra-care must be taken to

2The resolution reported in the GeoTIFF metadata.
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Figure 3: We utilised a within-scene split, which allocates the top 80% of a scene as a source of
training patches; the bottom-left and right 10% for validation and testing patches respectively.

avoid train-test leakage due to spatial correlation. For instance, Ploton et al. (2020) recently showed
that lack of consideration to spatial correlation lead to over-inflated results of ML models that mon-
itored forest biomass. In this work, we test the models using two different training and testing
splits. In the first approach, we split each scene in patches avoiding spatial overlap between patches
in the different subsets; with this approach, we seek to explore the performance of the models in
ideal conditions when training and testing patches come from similar distributions. Figure 3 shows
the dataset partition for one scene following this approach. In the second approach, models are
tested in images from the same location but different time periods (one month before). This split
seeks to explore the capacity of the models to generalise to different time acquisitions. There are
two scenes (0571E-1075N 2287 3888 and 0614E-0946N 2459 4406) that do not have PlanetScope
images from one month before, so we excluded those images from the dataset.

3 BASELINES

In earth observation, there has been some recent work with Molini et al. (2020) and Deudon et al.
(2020) tackling the MISR problem in Earth Observation, in single-band imagery. In particular,
Deudon et al. (2020) was the first approach to tackle the different problems in MISR (input co-
registration, fusion, and registration-at-the-loss) in an end-to-end manner, and with a small memory
footprint (due to its reused fusion operator in the low-res domain). Since then, several deep learn-
ing approaches with refined architectures have repeatedly beaten the state-of-the-art in the Proba-V
“post-mortem” leaderboard; most notably Salvetti et al. (2020).

This work modifies the HighRes-net architecture of Deudon et al. (2020) to the S-2 and PlanetScope
RGB images described in sections 2.2 and 2.1, and provide this as the baseline MISR method. For a
complete description of HighRes-net, we refer the reader to the original paper (Deudon et al., 2020).

For the Single-image super-resolution (SISR) baseline, we adapt the work of of Ledig et al. (2017),
which provided a significant step forward in terms of photo-realistic and perceptually pleasing
super-resolution. They introduced a far better CNN-based super-resolution network called Super-
Resolution Residual Networks (SRResNet) and is a common baseline in traditional super-resolution
tasks. In addition, when benchmarking MISR against SISR, it is important to define the Single-
Image Selection strategy used in SISR. In particular, given the high Sentinel-2 revisit, one has to
choose a revisit on which to do super-resolution using an SISR model. One could choose a random
revisit, however, in order to have an stronger baseline, we choose the best revisit indicated by the
lack of clouds.

3.1 SUPER RESOLUTION METRICS

For super-resolution, the primary quantitative metrics of performance are the peak signal-to-noise
ratio (PSNR) and the structural similarity index (SSIM) (Wang et al., 2004) between the super-
resolution image and the reference high-resolution image. Both measure the fidelity of the compared
images, but with SSIM more focused on the structures contained in the images.
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4 BASELINE RESULTS

In this section, we present the results of the Multi-Image Super-Resolution performance and image
reconstruction quality. This section focuses on performance of the models in terms of Peak Signal
to Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) (cf. sec. 3.1). These are the
most commonly used metrics for measuring super-resolution performance and image reconstruction
quality.

Table 1 shows the super-resolution performance of our evaluated models with the split described in
section 2.3.1. Bicubic method indicates the scores if LR images are just upscaled using bicubic in-
terpolation to match the HR image size. Bicubic interpolation and SRResNet (SISR) are computed
using the best S2 revisit in terms of cloud coverage. Here we see that the performance of the MISR
method (HighRes-net) is significantly higher than SISR (SRResNet) and Bicubic interpolation. Ad-
ditionally, we see that scores calculated in training and testing splits do not differ much in the trained
models (both in SSResNet and HighRes-net) which shows low overfitting.

Table 1: Average PSNR and SSIM scores (higher scores are better).

Subset Bicubic SRResNet HighRes-net
PSNR SSIM PSNR SSIM PSNR SSIM

Train 17.85 0.612 27.90 0.827 30.16 0.88
Validation 18.11 0.70 26.06 0.78 28.52 0.84
Test 18.54 0.70 26.83 0.80 29.40 0.85

In addition, we tested the same model applied to acquisitions in a different time period but over the
same regions. The results are shown in table 2. We notice a drop in performance across all methods,
but the super-resolution models still exceed the performance of the bi-cubic upsampling method by
a significant margin. Additionally, we still see that MISR outperforms SISR in all subsets.

Table 2: Average PSNR and SSIM scores for testing on a different time period.

Subset Bicubic SRResNet HighRes-net
PSNR SSIM PSNR SSIM PSNR SSIM

Train 17.27 0.63 22.66 0.74 23.28 0.76
Validation 18.14 0.69 22.49 0.73 22.56 0.73
Test 16.99 0.66 22.12 0.73 23.10 0.77

4.1 STATIC VERSUS DYNAMIC SCENES ABLATION

One of the challenge when performing MISR on remote sensing data lies in the use of multiple
revisits, which might show variability. In appendix C, we investigated the impact of the changing
condition on the performance on HighRes-net model, and showed that using static scene allows
achieving slightly better results in ideal conditions. However, using dynamic scenes helped to train
a more robust model when dealing with data acquired at different time period.

5 CONCLUSION

In this work, we introduced a dataset for benchmarking super-resolution, in particular multi-spectral
multi-image super-resolution, models on a real-world scientific application. We further provided
results for baselines methods, using both MISR and SISR. The code to construct the dataset and run
the baselines will be made publicly available upon de-anonymisation of the submission.
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A DATASET AREA OF INTEREST BREAKDOWN

Table 3: The subset (45) of SpaceNet-7 AOIs that we used in this work, acquired between December
2019 and January 2020. The high-level breakdown of the types of terrain contained in each scene
shows the overall geodiversity of the dataset. Left to right: % clouds is the average cloud coverage
(SCL=9) across all revisits; desert, agri(culture), urban, veg(etation), bare (soils) indicate the type
of terrain; a usable revisit is at least %50 cloud-free.

id Scene %clouds desert agri urban veg bare revisits
usable total %

1 0358E-1220N 1433 3310 70 1 1 1 8 13 62
2 1389E-1284N 5557 3054 69 1 1 1 8 13 62
3 0361E-1300N 1446 2989 66 1 1 8 13 62
4 1848E-0793N 7394 5018 66 1 1 1 7 13 54
5 0357E-1223N 1429 3296 65 1 1 1 6 13 46
6 1716E-1211N 6864 3345 62 1 5 13 38
7 1025E-1366N 4102 2726 55 1 1 1 5 13 38
8 1672E-1207N 6691 3363 53 1 1 5 13 38
9 1298E-1322N 5193 2903 56 1 1 1 4 13 31

10 1014E-1375N 4056 2688 49 1 1 1 4 13 31
11 1703E-1219N 6813 3313 58 1 1 1 3 13 23
12 1617E-1207N 6468 3360 24 1 1 3 13 23
13 1439E-1134N 5759 3655 61 1 1 1 5 10 50
14 0566E-1185N 2265 3451 96 1 1 6 7 86
15 0586E-1127N 2345 3680 83 1 1 1 6 7 86
16 1481E-1119N 5927 3715 81 1 1 1 6 7 86
17 0571E-1075N 2287 3888 81 1 1 6 7 86
18 1200E-0847N 4802 4803 80 1 1 1 6 7 86
19 1210E-1025N 4840 4088 95 1 1 1 5 7 71
20 1335E-1166N 5342 3524 84 1 1 1 5 7 71
21 1204E-1204N 4819 3372 74 1 1 1 5 7 71
22 0632E-0892N 2528 4620 67 1 1 1 5 7 71
23 1479E-1101N 5916 3785 67 1 1 5 7 71
24 0434E-1218N 1736 3318 84 1 4 7 57
25 1138E-1216N 4553 3325 71 1 1 4 7 57
26 0331E-1257N 1327 3160 68 1 1 4 7 57
27 1049E-1370N 4196 2710 59 1 1 4 7 57
28 1185E-0935N 4742 4450 33 1 1 1 2 7 29
29 0614E-0946N 2459 4406 29 1 1 2 7 29
30 1209E-1113N 4838 3737 100 1 1 1 1 6 6 100
31 0977E-1187N 3911 3441 100 1 1 1 6 6 100
32 1289E-1169N 5156 3514 99 1 1 6 6 100
33 0368E-1245N 1474 3210 67 1 1 6 6 100
34 1015E-1062N 4061 3941 100 1 1 5 6 83
35 1438E-1134N 5753 3655 92 1 1 5 6 83
36 1276E-1107N 5105 3761 91 1 1 1 5 6 83
37 1296E-1198N 5184 3399 87 1 1 1 5 6 83
38 0924E-1108N 3699 3757 67 1 4 6 67
39 0487E-1246N 1950 3207 98 1 1 3 6 50
40 1538E-1163N 6154 3539 63 1 1 3 6 50
41 1748E-1247N 6993 3202 57 1 1 3 6 50
42 1172E-1306N 4688 2967 56 1 1 1 3 6 50
43 1709E-1112N 6838 3742 44 1 1 1 3 6 50
44 0683E-1006N 2732 4164 58 1 1 2 5 40
45 0760E-0887N 3041 4643 33 1 1 2 5 40

B QUALITATIVE RESULTS OF MISR AND SISR ON THE DATASET

Fig. 4 shows a Sentinel-2 (low-res) image, a super resolved image using HighRes-net, and the Plan-
etScope (high-res) image. Particularly, the first row shows an urban area where the super-resolved
image (middle) is significantly sharper than the low-res Sentinel-2 image (left); in this image, it is
clear that counting buildings should be easier in the former than in the later.

C STATIC VERSUS DYNAMIC SCENES ABLATION

In this section, we present the result of a study conducted to measure the impact of the dataset on
the performance of the MISR method. The super-resolution task relies on using multiple images
acquired at different dates as input. Therefore, the revisits of the same scene can show significant
changes caused by various factors such as vegetation, human activities, or weather events.
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(a) Low-res (S-2, 10m) (b) Super-res (4.7m) (c) High-res (Planet, 4.7m)

(d) (e) (f)

Figure 4: Patch from a validation-set scene. How many buildings lie within the green polygon? Being more
than just a pretty picture, the super-resolved output of HighRes-net 4b also better delineates the buildings in
urban scenes, hence enabling downstream tasks like building segmentation, with improved accuracy compared
to prediction on a single S2 image. This is evidenced qualitatively by the fact that the manual count of buildings
in the green polygon in 4b is easier to perform than in 4a. Note that in both examples/rows, the spectra of the
super-res output is similar to the high-res PlanetScope reference —an undesirable side-effect if the spectral
information of the source low-res instrument is better than that of the high-res instrument.

We separated the dataset into two subsets for this experimentation: a static set containing scenes
with revisits showing no or very few changes and a dynamic set containing scenes with revisits
visible difference. For each scene, we computed the average pixel variance over the revisits. We
used the median average pixel variance as a threshold to discriminate between static and dynamic
scenes. The final static scene contained twenty-three scenes against twenty-two for the dynamic
scene. Most of the changes observed in the dynamic scenes were due to weather effects such as
cloud shadow, or changes in the illumination conditions.

We trained five MISR models on the static subset and five on the dynamic subset for this experi-
mentation. Each model was then tested on both subsets individually, following the split described
in section 2.3.1. We used the PSNR and SSIM metrics to evaluate the model performances. The
results depicted in the following paragraph are the average value measured.

The Table 4 shows the results measured for both condition. MISRstat refers to the models trained
using the static scenes, MISRdyn refers to the models trained using the dynamic scenes. On aver-
age MISRstat models reached a better PSNR on the static scenes, while the performances on the
SSIM metrics are equal. When applied on the dynamic test set, both MISRstat and MISRdyn

performances decrease and are almost equivalent. Overall, using static scenes for training allows
achieving better results in this ideal condition.

As in section 4, we also tested the models applied on acquisitions from a different period but over
the same regions. We used the test set without discriminating between static and dynamic scenes.
The results are shown Table 5. We notice that the average performances dropped drastically across
all models. However, the models trained using the dynamic scenes achieved slightly better perfor-
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Table 4: Average PSNR and SSIM scores (higher scores are better).

Subset MISRstat MISRdyn

PSNR SSIM PSNR SSIM

Static 28.62 0.85 28.44 0.85
Dynamic 28.00 0.86 28.01 0.85

mances than those trained on the static scenes. Models trained with dynamics scenes were exposed
to more variability during the training step, which, we suspect, helps the models be better at gen-
eralization. We see that for both training sets, the performances decreased compared with models
trained on the whole dataset (cf. tab. 2). It can be explained by the fewer data used for training,
divided by two in both cases.

Table 5: Average PSNR and SSIM scores (higher scores are better).

Subset MISRstat MISRdyn

PSNR SSIM PSNR SSIM

Test 19.17 0.74 19.76 0.76
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