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ABSTRACT

Recent advances in deep learning have provided impressive results across a wide
range of computational problems such as computer vision, natural language, or
reinforcement learning. Many of these improvements are however constrained to
problems with large-scale curated data-sets which require a lot of human labor
to gather. Additionally, these models tend to generalize poorly under both slight
distributional shifts and low-data regimes. In recent years, emerging fields such
as meta-learning or self-supervised learning have been closing the gap between
proof-of-concept results and real-life applications of machine learning by extend-
ing deep-learning to the semi-supervised and few-shot domains. We follow this
line of work and explore spatio-temporal structure in a recently introduced image-
to-image translation problem for storm event imagery in order to: i) formulate
a novel multi-task few-shot image generation benchmark in the field of AI for
Earth and Space Science and ii) explore data augmentations in contrastive pre-
training for image translation downstream tasks. We present several baselines for
the few-shot problem and discuss trade-offs between different approaches. Our
code: https://github.com/irugina/meta-image-translation.

1 INTRODUCTION

Benchmarks such as ImageNet (Deng et al., 2009) in computer vision or SQuAD (Rajpurkar et al.,
2016) in natural language processing have been pivotal in popularizing deep-learning techniques and
demonstrating their power. More recently, works such as ObjectNet (Barbu et al., 2019) in vision
have shown impressive results on these established benchmarks do not translate to good performance
in real-world situations, where the datasets might be less structured or more diverse. There is a lot
of interest in devising more challenging datasets, both of general interest as well as domain-specific
applications, that more closely resemble real-world situations practitioners might encounter when
trying to deploy machine learning models. Growing fields such as self-supervised (Le-Khac et al.,
2020) or multi-task learning (Hospedales et al., 2020) reflect these interests and provide promising
solutions to the aforementioned issues. However, the problem of model evaluation remains: for
example, in few-shot learning model evaluation is currently largely constrained to Omniglot (Lake
et al., 2019; 2015) (which has essentially been saturated), Miniimagenet (Vinyals et al., 2017) and
Metadataset (Triantafillou et al., 2019). Similarly, contrastive pretraining techniques are generally
evaluated on ImageNet (He et al., 2020; Chen et al., 2020).
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We address these known limitations in the broader field of AI by contributing a new computer
vision multi-task problem and move away from classification problems towards the field of image-
generation by leveraging a weather dataset (Veillette et al., 2020) to formulate a novel few-shot
image-to-image translation problem. In doing so we use the spatio-temporal structure of this dataset
in construction of the few-shot tasks. We further leverage this structure through contrastive pretrain-
ing by exploring novel data augmentations and show consistent improvements in sample quality. Our
work has three main contributions: i) we introduce a novel few-shot image translation benchmark
and provide several baselines for this problem; ii) we train generative adversarial networks using
model-agnostic meta-learning (MAML) (Finn et al., 2017) and discuss the advantages and draw-
backs of this approach; iii) we pretrain part of the generator parameters using contrastive learning
and show consistent improvements in downstream image-generation performance.

2 RELATED WORK

Storm Event Imagery The Storm Event Imagery (SEVIR) (Veillette et al., 2020) is a radar and
satellite meteorology dataset. It is a collection of over 10,000 weather events, each of which tracks
5 sensor modalities within 384 km× 384 km patches for 4 hours. Appendix A further details these
modalities, shows example samples, and defines domain-specific evaluation metrics. Veillette et al.
(2020) suggested several machine learning problems that can be studied on SEVIR and provided
baselines for two of these: nowcasting and synthetic weather radar generation. In both cases they
train U-Net models to predict VIL information.

Generative Adversarial Networks in Low Data Regimes There has been a lot of interest in
training GANs in low-data settings, where the discriminator can easily overfit and training does
not progress. (Zhao et al., 2020a). The only prior work we are aware of on the topic of few-shot
multi-task image generation with second-order gradient updates is that by (Clouâtre & Demers,
2019). They optimize using Reptile (Nichol et al., 2018), a first-order approximation to MAML,
and evaluate on the MNIST and Omniglot datasets. They also introduce a dataset which presents a
very clear delimitation between different tasks and more generally does not exhibit the challenges of
modeling real-world phenomena because the examples are icons rather than realistic images. Zhao
et al. (2020a) apply augmentations to both real and generated samples and require the transforma-
tions to be differentiable in order to backpropagate to the generator with good results using as little
as 10% of the available samples. Consistency Regularization (CR) is a semi-supervised training
technique introduced to GANs by (Zhang et al., 2019) and later extended by (Zhao et al., 2020b).
These techniques regularize the discriminator and generator network using data augmentations on
the generated samples or latent variables.

Machine Learning for Forecasting We focus on leveraging and building upon the work in (Veil-
lette et al., 2020) because of the associated public large dataset. However, there has been wider
interest in applying deep learning to improve the efficiency and performance of weather nowcast-
ing systems. Ravuri et al. (2021) introduced deep generative models that nowcast radar data for 90
minutes and are trained to minize three loss functions: one temporal and one spatial discriminator
terms to ensure spatiotemporal consistency, as well as a grid cell regularization term that improves
performance by penalizing errors at the grid cell resolution level. In contrast, we explore different
avenues towards similar results, and encourage spatiotemporal consistency through either explicit
task construction or contrastive pretraining.

3 FEW-SHOT BENCHMARK AND OUR BASELINES

Benchmark Construction We leverage the SEVIR (Veillette et al., 2020) dataset to construct a
few-shot multi-task image-to-image translation problem where each task corresponds to one event.
From the 49 available frames we keep the first Nsupport frames to form the task’s support set and the
next Nquery to be the query. Throughout the following experiments we set Nsupport = Nquery = 10.

Methods We solve the aforementioned task using either first-order or second-order gradient de-
scent methods on U-Nets (Ronneberger et al., 2015) trained using either reconstruction or adversarial
objectives. Note that in the case when we train GANs using MAML we are searching for a good
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(a) Validation mean absolute error throughout train-
ing and test-set evaluation of weather-specific metrics.
MAML optimization leads to better train objective and
SUCR but lower CSI and POD.

(b) Target VIL test-frame and generated
samples. Task-adaptation helps recognize
sparse VIL regions.

Figure 1: Reconstruction Loss Results: Objective evolution through training; final evaluation on
domain-specific metrics; examples of generated samples.

initialization for multiple related saddle-point problems. Despite this challenging task, we still ob-
tain good performance. We write out the algorithm for adversarial meta-learning in Appendix and
note that the other three training regimes are simplified version of our novel contribution above.
Note the introduction of two hyperparameters that influence training: λ specifies the importance of
reconstruction loss relative to adversarial term while η controls how much we adapt to each task in
MAML’s inner optimization.

Experimental Details We run experiments using a single 32GB Nvidia Volta V100 GPU. For
MAML optimization (Arnold et al., 2020) we use meta-batch sizes of 2, 3 or 4 events. For the corre-
sponding joint training baselines we used Nsupport +Nquery frames from each event and comparable
number of events to keep comparisons fair.

Results We test our multi-task few-shot formulation and demonstrate MAML provides empirical
gains by comparing the performance of models trained using either meta-learning algorithms or
joint training for both reconstruction and adversarial loss objectives. We find throughout all our
experiments that meta-learning minimizes the reconstruction error compared to joint training. On
the other hand, achieving better performance on the training objective does not always translate to
higher weather evaluation metrics.

Reconstruction Loss We compare joint training with MAML that uses a single adaptation step for
each event, evaluate model performance using weather metrics with two different thresholds (74 and
133). We summarize our evaluation results in Figure 1a. We find that even though U-Nets trained
with MAML achieve better performance on the optimization objective, these improvements do not
consistently translate to gains on weather-specific evaluation. In particular, we see that finetuning to
specific tasks leads to better precision but worse recall and IOU. Limitations given by training with
reconstruction loss, such as blurry outputs, remain.

Figure 1b exhibits one synthetic VIL imagery generated through either method, as well as the
ground-truth data. The task adaptation mechanism helps in this case to recognize that there are
some storm events in the lower-left corner, although it is not very effective at predicting the correct
shape of these low-intensity precipitations on a fine-grained scale.

Adversarial Loss We train generative adversarial networks using the second-order MAML proce-
dure and the joint training baseline. We compare the evolution of the reconstruction error throughout
training in Figure 6 (in the Appendix) and notice MAML significantly helps in minimizing the train-
ing objective. We used λ = 102 and η = 10−4 for this MAML curve.

Next, we evaluate on meteorological metrics for all values of λ and η, and summarize our results
in Table 1 and 2 (in the Appendix) for joint and MAML training, respectively. For joint adversarial
training, especially when evaluating with lower thresholds, we see the critical success index is fairly
constant as we vary λ while increasing λ leads to lower recall and higher precision. This suggests
that placing more weight on the reconstruction loss leads to predicting fewer high-valued VIL pixels.

For MAML adversarial training we do not identify any clear trend between hyperparameters λ and
η and the values of meteorological metrics on the test-split. We believe this shows training is more
unstable in this regime: instabilities are further exacerbated when optimizing a bilevel Nash equilib-
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(a) Adversarial MAML - generated samples. Fine-
tuning helps identify low-intensity VIL regions.

(b) Adversarial Joint - generated samples. Recon-
struction loss biases the model towards sparser pre-
dictions.

Figure 2: Generated samples from training with the adversarial loss.

rium problem with gradient descent, as we did above. A comparison between Tables 1 and 2 shows
that, similarly to the case of reconstruction loss, MAML optimization leads to higher precision and
lower recall. After visually inspecting the generated samples we find that some of the models seem
to exhibit mode collapse where the generated samples are not even realistic, while some of them
do resemble the ground-truth. We present examples of samples successfully generated by models
trained with MAML on adversarial loss below and note there is a large variance in the fraction of
realistic samples across different models. This is not reflected in any of the evaluation metrics: we
believe this further underscores that in image generation the correlation between good evaluation
performance and high sample quality is rather weak.

Figures 2b and 2a compare samples generated by models trained on adversarial loss through either
joint or MAML-based procedures for different values of λ. The MAML models all used an inner
SGD learning rate of 10−5. We see that in this case the intuitions from the reconstruction loss
setting are still valid and the task-adaptation inherent to MAML enables it to correctly generate
low-intensity VIL data that joint-setting misses out on. We also confirm the aforementioned trend
of higher λ values leading to lower VIL values.

4 SELF-SUPERVISED PRETRAINING

Method We follow recent work in self-supervised pretraining which applies contrastive learning
to convolutional networks before finetuning on classification tasks and improves downstream per-
formance and data efficiency. We ask if these improvements extrapolate to our image-to-image
setup. The main distinction between our scenario and those in previous work is that we can initial-
ize only a fraction of our parameters through contrastive pretraining. We restrict our attention to
the U-Net encoder parameters during the pretraining stage and follow the same network architecture
as in Section 3. Our experiments are inspired by the large-scale study on unsupervised spatiotem-
poral representation learning, conducted by (Feichtenhofer et al., 2021). In particular, we focus on
MoCoV3 (Chen et al., 2021), which is a state-of-the-art contrastive learning method, because (Fe-
ichtenhofer et al., 2021) identify the momentum contrast (MoCo) contrastive learning method as the
most useful for spatiotemporal data.

Pretraining objective. For a given representation q of a query frame from the dataset, a positive
key representation k+ and a negative key representation k−, the loss function increases the simi-
larity between q and k+, and decreases the similarity between q and k−. All representations are
normalized on the unit sphere. In particular, the loss is the InfoNCE loss (Oord et al., 2018) is

L̂q = − log ep(q)·sg(k+)/τ

ep(q)·sg(k+)/τ+
∑

k− ep(q)·sg(k−)/τ
for a temperature parameter τ and a predictor MLP p,

which is a two layer MLP, with input dimension 128, hidden dimension 2048, output dimension
128, BatchNorm and ReLU in the hidden layer activation, and where “sg” is the stopgradient oper-
ation. Following (Chen et al., 2021), the gradients are not backpropagated through k{+,−} and the
encoder representations both for keys and queries are obtained after a composition of the backbone
and the projector (which is a two layer MLP, with dimensions [256, 2048, 128] with BatchNorm
and ReLUs in between the hidden layers, and ending with a BatchNorm with no trainable affine
parameters). Additionally, the branch for key representations follows the momentum update policy
θk ← mθk + (1−m)θq from (He et al., 2020) with momentum parameter m = 0.999, where θk are
the weights in the key branch and θq are the weights in the query branch (see Section B). We further
consider using the temporal structure of SEVIR for augmentations, as follows. Each event consists
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Figure 3: Contrastive Learning for SEVIR. For mean absolute error lower is better. For every
other evaluation measure, higher is better.

(a) Augmentations for the contrastive learning
experiment By indicating “more” we show exam-
ples of a larger magnitude of the augmentation be-
ing applied.

(b) Pretrained encoder - generated samples
Pretrained models better identify the sparse high
VIL values.

Figure 4: Contrastive pretraining for SEVIR.

of 49 frames, so we anchor every even frame as query frame and use every odd frame as key frame.
For each query frame, to obtain q and k+ we apply the following stochastic transformations to the
frame twice: random resized crops using scale (0.8, 1.0); random horizontal flips with probability
0.5, pixel-wise gaussian noise sampled from the normal distribution N (0, 0.1) with probability 0.5,
gaussian blur with kernel size 19, random vertical flips with probability 0.2, random rotation by an-
gle unformly chosen in (−π/6, π/6). The rest of the augmentation arguments follow the default in
the Torchvision library (https://pytorch.org/vision/stable/transforms.html).
In Figure 4a we present a conceptual visualization of the transforms. To obtain k− we apply the
above stochastic transformations to the corresponding key frame once (see Section D). lists design
challenges when using data augmentation.

Results In Figure 3 we report our results. Firstly, for mean absolute error we find marginal yet
somewhat consistent gains up to level 3 augmentation. Secondly, we also evaluate on meteorological
metrics. We find that even though pretraining has a marginal effect on the reconstruction loss train
objective, it often provides important gains on domain-specific evaluation criteria. We highlight the
large improvement in CSI133 and POD133. We observe that up to level 4 MoCoV3 augmentation
we obtain improvements throughout all measures with the contrastive pretraining. Finally, Figure 4b
demonstrates that pretraining the U-Net encoder leads to better performance in high-VIL regions.

5 CONCLUSION

We formulated a novel few-shot multi-task image-to-image translation problem leveraging spatio-
temporal structure in a large-scale storm event dataset. We provided several benchmarks for
this problem and considered two optimization procedures (joint training and gradient-based meta-
learning) and two loss functions (reconstruction and adversarial). We trained U-Nets in all these
regimes and presented each model’s performance, as well as evaluated on various domain-specific
metrics. We discussed the advantages and disadvantages of each of these. In this process we also
explored a training method unexplored until now to the best of our knowledge: meta-learning ad-
versarial GANs with second-order gradient updates. Additionally, we explored pretraining U-Net
encoder parameters using various augmentations in both the spatial and temporal domains.
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Figure 5: Frame from The Storm Event Imagery (SEVIR) dataset. We use four of the five
available modalities: 2 IR, VIL, and lightning information

A FURTHER SEVIR DETAILS

SEVIR events are uniformly sampled so that there are 49 frames for each 4 hour period, and the
5 channels consist of: i) 1 visible and 2 IR sensors from the GOES-16 advanced baseline (Schmit
et al., 2017) ii) vertically integrated liquid (VIL) from NEXTRAD iii) lightning flashes from GOES-
16 . Fig. 5 shows examples of the two IR, VIL, and lightning modalities. We disregard the visible
channel.

We review common evaluation metrics used in the satellite and radar literature to analyse artificially-
generated VIL imagery. They all compare the target and generated samples after binarizing them
with an arbitrarily threshold in [0, 255] and looking at counts in the associated confusion matrix.
Let H denote the number of true positives, C denote the number of true negatives, M denote the
number of false negatives and F the number of false positives. Veillette et al. (2020) define four
evaluation metrics: Critical Succes Index (CSI) is equivalent to the intersection over union H

H+M+F ;
Probability of detection (POD) is equivalent to recall H

H+M ; Succes Ratio (SUCR) is equivalent to
precision H

H+F

B FURTHER HYPERPARAMETERS

Training We randomly split all SEVIR events into 9169 train, 1162 validation, and 1148 test
tasks. Joint training baselines and MAML outer loop optimizations are both performed using the
Adam optimizer (Kingma & Ba, 2017) with learning rate 0.0002 and momentum 0.5. We resize
input modalities to all have 192× 192 resolution and keep the target at 384× 384. The generator’s
encoder has four convolutional blocks, and the decoder has five. All generator blocks except for the
last decoder layer use ReLU activation functions. The very last layer uses linear activation functions
to support z-score normalization for all four image modalities.

Contrastive Pretraining Our experiments use the following architectural choices: mini-batch,
consisting of 3 events with 24 frames for queries and key 24 frames for keys each; 0.015 base learn-
ing rate for the baseline SimCLR and SimSiam and; 100 pretraining epochs; standard cosine decayed
learning rate; 5 epochs for the linear warmup; 0.0005 weight decay value; SGD with momentum
0.9 optimizer. We report the joint training reconstruction loss experimental setup by finetuning the
checkpoint obtained from pretraining. All parameters are in a Pytorch-like style.

C METHODS

Below we present the meta-train loop for adversarial networks, which is a novel contribution of our
work. For simplicity, we only present the variant with a single SGD inner-loop adaptation step.
We train a U-Net generator G with model weights wG jointly with an extranous patch discrimi-
nator D with model weights wD using data D ∈ RNevent×Nframes×C×w×h. We use batched alternat-
ing gradient descent as our optimization algorithm and consider batches B ∈ RB×Nframes×C×w×h,
where B is the meta-batch size. Each of these can be split along the second axis into the sup-
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port and query sets, and along the third axis into the source (S) and target tensors (T ) to create
Ssupport ∈ RB×Nsupport×Cin×w×h, Squery ∈ RB×Nquery×Cin×w×h, T support ∈ RB×Nsupport×Cout×w×h,
T query ∈ RB×Nquery×Cout×w×h. For any of these tensors X ∈ {Ssupport, Squery, T support, T query}
we refer to the four-dimensional tensor given by the ith task or event as Xi. We use such four-
dimensional tensor quantities to evaluate the generator and discriminator loss functions:

L̂G(t
generated, t, s;wG, wD) = − logD(s, tgenerated) + λ||tgenerated − t||1 (1)

L̂D(tgenerated, t, s;wG, wD) =
logD(s, tgenerated)− logD(s, t)

2
, (2)

where tgenerated = G(s) is a generated target sample, t and s are corresponding input and output
modalities, ||x||1 is the mean absolute error. Note the slight abuse of notation where by logD(x, y)

with x, y ∈ RN×C×w×h we mean the average 1
N

∑N
i=1 logD(xi, yi). This formulation also uses

the trick of replacing max log (1−D(G(z))) with min logD(G(z)) to obtain a non-saturating gen-
erator objective. We wrote the loss functions above such that both players want to minimize their
respective objectives.

for meta-train-batch B ∈ RB×Nframes×C×w×h do
unpack B ∈ RB×Nframes×C×w×h along support/query, source/target into:

Ssupport, Squery, T support, T query

init lbatch
G = 0, lbatch

D = 0
for each event i out of B in meta-batch do

forward pass T support; generated
i = G(Ssupport

i )

ladapt
G = LG(T

support; generated
i , T support

i , Ssupport
i ;wG, wD) from Eq. 1

ladapt
D = LD(T support; generated

i , T support
i , Ssupport

i ;wG, wD) from Eq. 2
task-specific parameters ϕG ← wG − η∇wG

ladapt
G

task-specific parameters ϕD ← wD − η∇wD
ladapt
D

forward pass T query; generated
i = G(Squery

i )

lG = LG(T
query; generated
i , T query

i , Squery
i ;ϕG, ϕD) from Eq. 1

lD = LD(T query; generated
i , T query

i , Squery
i ;ϕG, ϕD) from Eq. 2

update rolling sums lbatch
G + = lG and lbatch

D + = lD
end
backpropagate 2nd order updates∇wG

lbatch
G and ∇wD

lbatch
D to wG and wD

end
return good initializations wG and wD for both generator and discriminator.

Algorithm 1: One Epoch MAML-Train Loop for U-Net Generator with Adversarial Loss.

D DATA AUGMENTATION FOR CONTRASTIVE PRETRAINING

Another difficulty particular to our setup is the problem of choosing data augmentations the input
domain is invariant to because weather modalities have different invariances than natural images:
for example, the popular color jitter transformation is not applicable here, because image-to-image
translation is sensitive to color. From the standard augmentations, the ones we consider are: ran-
dom resized crops, random horizontal flips, gaussian noise, gaussian blur, random vertical flips and
random rotation.

E ADDITIONAL EXPERIMENTAL RESULTS

In Figure 6 and Tables 1 and 2 we present additional results that have been discussed in the main
text.
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Figure 6: Adversarial loss - train curve. MAML outperforms Joint Training. Evaluation is done
on validation set throughout training.

Table 1: Adversarial Joint - evaluation. Test-set evaluation on meteorological metrics.

thresh. 74 133
metric CSI POD SUCR CSI POD SUCR
λ: 102 0.29 0.50 0.56 0.27 0.30 0.76
λ: 103 0.29 0.46 0.58 0.29 0.35 0.71
λ: 104 0.29 0.43 0.64 0.29 0.33 0.73

Table 2: Adversarial MAML - evaluation. Test-set evaluation on meteorological metrics. MAML
models have higher precision and lower recall and IOU.

thresh. 74 133
metric CSI POD SUCR CSI POD SUCR

η: 10−4
λ: 102 0.14 0.16 0.93 0.24 0.26 0.90
λ: 103 0.09 0.09 0.98 0.20 0.20 0.99
λ: 104 0.13 0.21 0.91 0.21 0.32 0.87

η: 10−5
λ: 102 0.19 0.23 0.87 0.23 0.27 0.84
λ: 103 0.17 0.20 0.90 0.25 0.29 0.87
λ: 104 0.12 0.15 0.93 0.22 0.26 0.91
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