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ABSTRACT

Sea ice charts, an important tool for navigation in the Arctic, are to this day man-
ually drawn by professional ice analysts. The primary descriptor of the charts
– the Sea Ice Concentration (SIC) – indicates the ratio of ice to open-water in
an area. Automating the SIC chart production is desired but the optimal repre-
sentation of the corresponding machine learning task is ambivalent. Here, we
explore it with either regressional or classification objective, each with two differ-
ent (weighted) loss functions: Mean Square Error and Binary Cross-Entropy, and
Categorical Cross-Entropy and the Earth Mover’s Distance, respectively. While
all perform well, the regression-based models achieve higher numerical similar-
ity to the ground truth, whereas classification results in more visually pleasing
and consistent charts. Weighting the loss functions improves the performance for
intermediate classes at expense of open-water and fully-covered sea ice areas.

1 INTRODUCTION

The Arctic oceans are experiencing diminishing sea ice covers due to global warming (Perovich
et al., 2020), rapidly making them more accessible to new commercial opportunities and resource
extraction (Funk, 2009). The opening of the Northern Sea Route linking the far East to Europe and
the coasts of North America across the Arctic could disrupt global supply chains by decreasing the
shipping time and costs substantially (Bekkers et al., 2017). Thus, high-resolution sea ice charts
outlining the ever-changing sea ice conditions are indispensable.

Synthetic Aperture Radar (SAR) images offer high-resolution, versatile measurements independent
of sun illumination and clouds. However, they are difficult to interpret for untrained eyes; the radar
backscatter is dependent on surface properties, and ambiguities between open water and sea ice are
common. Professional sea ice analysts at the Danish Meteorological Institute (DMI) interpret these
signatures to manually draw charts of the sea ice conditions around Greenland (Saldo et al., 2020).
This is a resource- and time-consuming endeavour, inspiring the need for automation.

Using Convolutional Neural Networks (CNN) and SAR for automatic sea ice charting was originally
published by Wang et al. (2016). Newer advancements apply SAR and Passive Microwave Radiome-
ter CNN data fusion models in the Automatic Sea Ice Products (ASIP) project (Malmgren-Hansen
et al., 2020; 2021). de Gélis et al. (2021) is the first paper to adopt the U-Net CNN architecture
(Ronneberger et al., 2015) to map sea ice using downscaled SAR data. Finally, Stokholm et al.
(2022) demonstrated that increasing the receptive field of the U-Net improves predictions. In this
study, we analyse different representations of the model’s objective to better capture the intuition of
human-labelled sea ice charts.

The Sea Ice Concentration (SIC) is the percentage ratio of sea ice to open-water for an area, dis-
cretised into 11 10%-bin classes ranging from 0% (open-water) to 100% (fully-covered sea ice).
Training the model with classification loss functions, such as categorical Cross-Entropy (CE), may
not reflect the inter-class relationship, penalizing the model disproportionately, e.g. if 60% is pre-
dicted instead of 50%, the penalty is equal to a prediction of 0%. Indeed, Stokholm et al. (2022)
showed that (weighted) CE excels at predicting open-water, but it often remained inadequate for the
intermediate SIC classes (10-90%). Therefore, here we compare CE to Mean Squared Error (MSE),
Binary Cross-Entropy (BCE) and squared Earth Mover’s Distance (EMD2) losses. These four loss
representations allow us to express the learning objective as either classification, regression (linear
or logistic), or transportation problems, respectively, and wage between their relative advantages.

∗Equal contribution, alphabetically ordered.
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2 DATA

The experiments are conducted with the European Space Agency’s (ESA) AI Ready Earth Obser-
vation (AIREO) sea ice dataset, AI4Arctic / ASIP v2 (ASID-v2) (Saldo et al., 2020), compiled by
DMI, the Technical University of Denmark (DTU), and Nansen Environmental and Remote Sensing
Center (NERSC). It includes 461 co-located and georeferenced scenes distributed across the Green-
land coast, between March 14, 2018, to May 25, 2019. We utilise the two layers; the Sentinel-1 dual
polarised HH and HV SAR images and the corresponding professionally drawn SIC chart (see Fig.
1 for illustration).

2.1 SENTINEL-1 SAR

The Sentinel-1 satellites use a C-band SAR with a 5.405 GHz frequency (Geudtner & Torres, 2012).
We use the medium resolution level 1 ground range detected data product, measured in the Extra-
Wide operational mode with a pixel spacing of 40 m and resolution of 93×87 m (range × azimuth).
Following the findings of (Stokholm et al., 2022), we applied NERSC SAR noise correction to the
data. This denoising technique is described in (Park et al., 2018; 2019).

2.2 SEA ICE CHARTS

Sea ice charts are snapshots of the ice conditions at acquisition time, drawn as polygons of fairly
homogeneous sea ice areas, and based on the professional interpretation of the subsequent SAR
images. Charts follow the SIGRID3 (Sea Ice GeoReferenced Information and Data) created by the
World Meteorological Organization. The process of shaping polygons and assigning SIC, albeit
steered by common guidelines, is a creative and individual interpretation – studies suggest that ice
analysts assign concentrations that can vary on average 20% and up to 60% (Karvonen et al., 2015).
Intermediate classes are particularly difficult to assess, and regions with potential for high maritime
activity, such as the edge of the sea ice cover, receive more attention. Nevertheless, we treat the
human-made SIC labels as ground truth.

For data preprocessing, the procedure in Stokholm et al. (2022) is applied. 306 training and 23 test
scenes are selected (9:1 split), the latter deemed particularly difficult by DMI and mirror the training
set class distribution. Classes: 0 (open-water), 10 (100% sea ice), and 11 (masked pixels) are by far
the most represented in the dataset. The remaining ones are relatively equally distributed.

SAR HH SAR HV SIC chart

Figure 1: Sample scene – Fram Strait, Northeast Greenland. Scene acquired August 22, 2018. a-b)
HH and HV SAR images, respectively. c) corresponding human-drawn SIC chart (ground truth).

3 MODEL IMPLEMENTATION

We train a U-Net (Ronneberger et al., 2015) with 8 encoder-decoder blocks (16 and 32 filters in
the first two and 64 filters in the remaining) for 100 epochs, each with 500 training steps, using the
Adam optimiser. A batch consists of 32 patches of 768×768 pixels, randomly cropped from training
scenes. The crop sampling and augmentation procedure from Stokholm et al. (2022) are applied.
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Models are evaluated using accuracy, average class accuracy (excluding the masked pixel class), and
the R2 metric – often better in capturing the continuity of the distance between predictions and the
ground truth. All the experiments were carried out on two Nvidia TeslaV100 SXM2 32 GB GPUs
using PyTorch 1.8 library. The code for the experiments is available at (Stokholm & Kucik, 2021).

4 LOSS REPRESENTATION

In this paper, we study how the choice of loss function representation affects the performance of the
model with respect to the given objective. Predicting the percentage concentration of ice in seawater
is a seemingly regressional problem, demanding the distance between the predicted and expected
scalars minimised in a geometric sense using, for instance, the MSE.

Alternatively, assuming that the sea surface may only consist of water or ice particles, we may view
SIC as the (percentage) probability of sampling an ice molecule from a given sea surface region.
From this perspective, it is more natural to tackle the problem as a logistic regression one, treating
the SIC values as confidence levels of sampling ice rather than water. This can be executed with
BCE loss, for example.

The main issue with the two approaches above is that SIC does not represent a continuous value.
Furthermore, the discrete classes are not derived by quantifying well-defined physical properties.
Instead, they reflect the intuition and experience of professional ice analysts. Therefore, sea regions
with a fixed ice concentration can still be assigned to varying SIC classes, and also the size or shape
of the region itself can vary. To illustrate this, let us consider the continuous value of human age and
the idea of someone being either young or old. A person of age 30 can be classified as both young
or old, depending on their characteristics and on who is judging. Analogously, it may be more
appropriate to represent SIC segmentation as a classification problem, using CE loss, for example.

4.1 EARTH MOVER’S DISTANCE

CE classification has a perceptible flaw in this setting – it assumes the lack of correlation between
class predictions, which is not the case here. Let us recall the human age example: if we classify
people as babies, kids, adolescents, adults, or elderly, then clearly the elderly group must be more
correlated with the adults rather than the babies category. Therefore, a loss function that leverages
the inter-class relationship is recommended in this instance.

The Earth Mover’s or Wasserstein’s EMD distance between two distributions P and Q may be
defined as

EMD(P, Q) := inf
γ∈Π(P,Q)

E(x,y)∼γ∥x − y∥, (1)

where Π(P,Q) is the set of all joint distributions whose marginals are P and Q, and ∥ · ∥ is some
norm on the space on which P and Q are defined (Arjovsky et al., 2017). The reason behind the
EMD name is that we can view it as the cost of optimally transporting ”earth mass” between x
and y (Monge, 1781). An obstacle in using the EMD as the objective function is the infimum
in equation 1 is often intractable, so certain assumptions are made to simplify it. Frogner et al.
(2015) and Martinez et al. (2016) approximate EMD for supervised multi-class multi-label learning,
Arjovsky et al. (2017) use weight clipping and Gulrajani et al. (2017) use gradient penalty EMD-
based generative adversarial networks. Under certain conditions (Levina & Bickel, 2001), EMD is
equivalent (up to a normalisation constant) to the Mallows distance:

EMD(P, Q) = ∥CDF(P )− CDF(Q)∥, (2)

where CDF is the Cumulative Density Function. Those conditions are satisfied for ordered-, single-
class learning (Hou et al., 2016). The authors recommend using the squared EMD (EMD2) for
faster convergence. Thus, in the Euclidean setting, we can represent the SIC (per-pixel) EMD2 loss
as

EMD2(y, ŷ) =
∑
i

 i∑
j=1

yj −
i∑

j=1

ŷj

2

, (3)

where yj and ŷj are the jth elements of true and predicted label distributions, y, ŷ respectively, and
the outer sum is taken over all available classes i.
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4.2 LOSS AND THE TRAINING DATA IMBALANCE

As mentioned, the dataset is inherently imbalanced. This can be mitigated by associating a penalty
with each class, i.e. multiplying individual pixel losses by a weight factor w. We choose a weighting
factor as the inverse class frequency and normalise it (i.e.

∑
w = 1).

Another issue is the variable number of valid (i.e. not masked pixels) in the training samples,
discarded during the total loss computation. If we view each sample as a batch of pixels, this is
equivalent to having a variable batch size at each iteration. To harmonise them, we discount each
example’s loss by the inverse of the number of its valid pixels. Alternatively, we may picture this
as associating a weight 1 with each valid and 0 with each masked pixel, and then calculate the per
example loss as a weighted average of per-pixel losses.

To summarise, if we have an example X, associated labels Y = (Yi,j)i,j , and model predictions
Ŷ = (Ŷi,j)i,j , then we define the per example loss function as

Loss(Y , Ŷ ) :=

∑
i,j w(Yi,j) loss(Yi,j , Ŷi,j)

v(X)
, (4)

where w(Yi,j is the weight associated with class Yi,j , ”loss” is per-pixel loss function (in this case
either MSE, BCE, CE, or EMD2), v(X) is the number of valid pixels of X, and summed across all
valid pixels (i, j). Without the loss of generality, we assume that the unweighted loss is obtained
simply by setting w to be uniformly equal to 1 for valid classes.

Weighting the BCE and EMD2 reduces their standard value range by several orders of magnitude,
degrading the effectiveness of gradient descent, which results in the model’s performance being
reduced by a double-digit percentage. To perform a more adequate comparison, we keep them in
line with other loss choices by multiplying them by factors of 100 and 1000, respectively.

5 RESULTS AND DISCUSSION

The R2-scores and the accuracy values for each of the loss functions are summarised in Table 1.
Since R2 values are similar for all the losses, we repeated the experiments 5 times to reduce the
dependence on weights’ initial values. The distributions of the resulting R2 scores and accuracies
are shown in Figs. 2-3) in Appendix A. In each loss function category, we select the model with
the best R2 score for more detailed analysis. The accuracy is further split into the: overall-, average
per class-, open-water-, intermediate SIC average-, and 100% SIC accuracy. The accuracy levels for
each of the individual classes is fully-catalogued in Table 2 in Appendix A.

Table 1: Test R2 scores and accuracy values (in %). w indicates a weighted loss. Best results in
bold. ACA = Average Class Accuracy; AICA = Average Intermediate Class Accuracy.

Loss R2 Acc ACA 0% acc AICA 100% acc
MSE 93.12 65.81 31.90 83.60 27.18 80.41
BCE 92.64 68.92 36.25 90.30 24.68 83.76
CE 90.31 74.08 33.54 97.49 21.85 95.06
EMD2 91.37 73.34 33.26 96.23 22.22 93.92
w MSE 89.93 51.86 34.84 68.25 29.26 51.05
w BCE 90.10 56.30 34.83 73.64 29.97 56.10
w CE 87.71 62.92 38.56 85.93 32.18 57.29
w EMD2 89.78 61.53 36.89 80.79 29.34 65.07

Generally, the unweighted loss functions result in a higher R2 score, overall-, open-water-, and
100% SIC accuracy. This is expected given the class imbalance in the dataset (skewed towards 0%
or 100% SIC). On the other hand, in the weighted setting, we observe a better average per class- and
intermediate SIC accuracy, but with lower 0% and particularly the 100% accuracies. Regardless of
whether the loss weighting is applied, the models optimised with respect to MSE and BCE obtain
the highest R2-score, while the accuracy is superior when CE or EMD2 are used.
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It appears that using the regressional losses results in more uniform performance across the individ-
ual classes, whereas the classification objectives seem to prioritise particular classes, e.g. EMD2 has
accuracy close to 0 for 3 of the classes but up to 38% in other intermediate classes. Weighting the
loss functions seem to somewhat mitigate this tendency. Additionally, Figs. 2-3 illustrate that the R2

and accuracy performance variability are largest for the weighted functions, indicating difficulties in
learning the underrepresented classes despite equal class weighting.

Figs. 4-7 in Appendix B illustrate four selected tests scenes, including the HH and HV SAR images,
the professional labelled SIC chart (ground truth), and the corresponding model outputs with asso-
ciated R2-scores. The scenes in Figs. 4-5 are from Scoresbysund, East Greenland, and Figs. 6-7 are
from the Fram Strait in Northeast Greenland. Fig. 4 exhibits a large 100% SIC area, with landfast
sea ice in the fjord, which often appears darker than typical sea ice and is thus difficult to distinguish
from open water. The scene also contains a sea ice edge with abundant and detailed intermediate
SIC, as well as a bright near-range field in the right side portion of the SAR image. The detailed
sea ice edge is predicted well except for the weighted MSE and BCE. The regressional models are
deficient in the landfast ice area, while MSE objectives produce noise in the bright near-range field.
Fig. 5 also has landfast ice in the fjord but lower SIC at the mouth. Here the weighted losses per-
form well on the low SIC while the unweighted ones correctly classify the 100% SIC in the fjord,
with the MSE- and EMD2-based models performing best. CE-optimised models struggle with the
landfast ice, substantially lowering their scores. The scene in Fig. 6 contains large variations in SIC
with multiple transitions between sea ice and open water. The unweighted setting performs better in
both: along the ice edge with high detail level and in the 100% SIC areas. Weighted losses tend to
make blurry predictions along low SIC edges. The final scene in Fig. 7 exhibits sea ice close to a
meandering coast with a variety of islands and SICs. Here, the unweighted losses over-predict 100%
SIC, whereas the weighted versions score higher with more adequate SICs. Again, the MSE-based
models are impacted by the bright near-range field.

6 CONCLUSION AND FUTURE WORK

This study presents the comparison of how different loss function representations affect model per-
formances with respect to predicting the discrete percentage concentration of ice in seawater. Four
analogues: Mean Square Error and Binary Cross-Entropy for regressional representation and Cat-
egorical Cross-Entropy and the squared Earth Mover’s Distance for classification, are considered,
with an optional class weighting scheme.

Generally, the models score well on the metrics and generate ice charts with a strong resemblance
to the ground truth. The unweighted-loss models’ performance is superior but they tend to over-
predict 100%. Their weighted equivalents take precedence for intermediate SICs, but they create less
detailed, more blurry charts. Given the modest improvement in the intermediate classes, weighting
the loss functions may not justify sacrificing the performance in the 0% and 100% classes.

The loss functions can be quantitatively summarised as follows. For the R2-score, from best to
worst: MSE, BCE, EMD2 and CE. For accuracy the order is reversed: CE, EMD2, BCE and
MSE. Despite regressional models achieving higher R2-scores, predictions are inferior in predicting
100% SIC in areas with landfast ice and produce charts with large SIC variations, not observed
in the ground truth. In addition, the MSE-based models have noisy outputs. Although the SIC
representation is naturally continuous, classification objectives outperform the regressional models
in terms of qualitatively assessing the predictions, which is most important for ice chart users. In
this setting, EMD2 achieves higher R2 scores than CE, and is more reliable with landfast ice, but
with otherwise no improvements in accuracy. The more numerically similar predictions of EMD2

could form the basis for further model exploration.

Future work could involve identifying an approach to improve intermediate SICs performance while
retaining high accuracies in 0% and 100%. Balancing the dataset, sampling more intermediate SICs
or decoupling them from the 0% and 100% classes during the training, could provide improvements,
regardless of the choice of the loss function.
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A APPENDIX - MODEL’S PERFORMANCE DISTRIBUTION

Table 2: Test accuracy values for individual classes. w indicates a weighted loss.

Loss 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
MSE 83.60 30.50 30.96 28.95 16.85 16.32 31.19 24.43 18.26 37.98 80.41
BCE 90.30 32.78 16.41 22.58 12.08 20.63 44.04 30.15 14.60 31.44 83.76
CE 97.49 15.06 4.47 33.87 27.85 12.47 4.10 32.38 15.20 30.98 95.06
EMD2 96.23 0 29.83 38.00 33.92 0.10 1.18 28.45 12.42 31.77 93.92
w MSE 68.25 38.22 35.45 28.26 23.58 19.92 42.70 25.92 15.33 34.57 51.05
w BCE 73.64 32.59 33.27 35.34 21.82 22.21 30.21 19.79 16.54 41.66 56.10
w CE 85.93 64.91 21.63 22.98 25.76 26.35 13.07 35.13 24.81 46.36 57.29
w EMD2 80.79 66.74 17.36 9.36 30.9 23.50 7.17 43.63 14.83 46.4 65.07

Figure 2: Test R2 score distribution. w indicates a weighted loss.

Figure 3: Test accuracy distribution. w indicates a weighted loss.

8



Published as a conference paper at ICLR 2022

B APPENDIX - SAMPLE SCENES
SAR HH SAR HV Ground Truth
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Figure 4: Scoresbysund, East Greenland. Scene acquired May 9, 2019.
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Figure 5: Scoresbysund, East Greenland. Scene acquired June 26, 2018.
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SAR HH SAR HV Ground Truth
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Figure 6: Fram Strait, Northeast Greenland. Scene acquired August 22, 2018.
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Figure 7: Fram Strait, Northeast Greenland. Scene acquired September 3, 2018
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