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ABSTRACT

Ensemble weather predictions typically show systematic errors that have to be cor-
rected via post-processing. Even state-of-the-art post-processing methods based
on neural networks often solely rely on location-specific predictors that require
an interpolation of the physical weather model’s spatial forecast fields to the tar-
get locations. However, potentially useful predictability information contained
in large-scale spatial structures within the input fields is potentially lost in this
interpolation step. Therefore, we propose the use of convolutional autoencoders
to learn compact representations of spatial input fields which can then be used
to augment location-specific information as additional inputs to post-processing
models. The benefits of including this spatial information is demonstrated in a
case study of 2-m temperature forecasts at surface stations in Germany.

1 INTRODUCTION AND MOTIVATION

Most weather forecasts today are based on ensemble simulations from numerical weather prediction
(NWP) models, consisting of a set of deterministic forecasts that differ in initial conditions or model
physics. Despite continued improvements (Bauer et al., [2015), ensemble predictions continue to
exhibit systematic errors such as biases or a lack of calibration. The process of correcting such
errors to obtain more accurate and reliable forecasts is referred to as post-processing (Vannitsem
et al.} 2018). Post-processing models use ensemble predictions from the NWP system as inputs, and
produce a probability distribution as their output. Post-processing has become a standard practice
in research as well as operations, and is an integral part of weather forecasting today. Parametric
approaches from statistics where the forecast distribution takes the form of a probability distribution
with parameters depending on summary statistics of the ensemble predictions of the target variable
have been developed for a large variety of weather quantities. Over the past years, much work
has been spent on flexible machine learning techniques for post-processing which enable the in-
corporation of additional predictor variables beyond ensemble forecasts of the target variable, and
have demonstrated superior forecast performance (Haupt et al.||2021; [Vannitsem et al.| 2021)). Much
recent research interest has been focused on neural network (NN)-based distributional regression ap-
proaches first proposed in |Rasp & Lerch|(2018), where NNs learn nonlinear relationships between
arbitrary predictor variables and forecast distribution parameters in a data-driven way.

All of these post-processing methods share a common limitation: To provide predictions at individ-
ual locations (typically weather stations or grid points), they require localized ensemble forecasts,
which are obtained by interpolating the NWP ensemble members’ two-dimensional forecast fields
to the target locations. However, the large-scale spatial structure and predictability informatiorﬂ
present in the physically consistent forecast fields from the ensemble simulations are lost in this in-
terpolation step. We propose the use of convolutional autoencoders to learn low-dimensional latent
representations of the spatial forecast fields. The learned representations are then used as addi-
tional predictors to augment a NN-based post-processing model with information about the spatial
structure of relevant forecast fields. The proposed model architecture is applied in a case study of
2-m temperature forecasts at surface stations in Germany, and compared to state-of-the-art post-
processing models without spatial inputs.

1e.g., flow-dependent error characteristics and weather regimes (Rodwell et al., |2018; |Allen et al., [2021))
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The remainder of the paper is organized as follows. Section [2]introduces the data. In Section[3] we
describe the autoencoders and their combination with post-processing models. The main results are
presented in Section ] and Section [5] concludes with a discussion. Python code with implementa-
tions of all methods is available online (https://github.com/slerch/convae_pp).

2 DATA

We use the dataset from Rasp & Lerch| (2018) focusing on 2-m temperature (T2M) forecasts at sur-
face stations in Germany at a forecast lead time of 48 h. Forecasts from the global European Centre
for Medium-Range Weather Forecasts 50-member ensemble initialized at 00 UTC every day form
the basis for two types of predictor variables. To obtain location-specific predictors, following Rasp
& Lerch|(2018)), we interpolate ensemble forecast of 17 meteorological variables to the observation
station locations, see their Table 1 for an overview of the available variables. In addition, we also
use the spatial forecast fields of T2M, geopotential height at 500 hPa (Z500), and the U- and V-wind
at 850 hPa (U850 and V850) as a second dataset of spatial inputs. Those variables were chosen
broadly based on meteorological intuition, and are available on 0.5° x 0.5° grid from -10E to 30E
and from 30N to 70N, which roughly covers Europe and parts of the surroundings.

Observation data of T2M for 537 weather stations in Germany are used to evaluate the forecasts.
Information about the station coordinates, altitudes and orography (altitude of the model grid point)
are derived as additional input predictors for the post-processing models. With ensemble predictions
available from 3 January 2007 to 31 December 2016, we follow the setup in [Rasp & Lerch|(2018)
and use data from 2007-2015 as training dataset, and data from 2016 as test dataset.

3 METHODS

We focus on post-processing methods within the parametric distributional regression framework
proposed by |Gneiting et al.|(2005)). In their ensemble model output statistics (EMOS) approach, the
conditional distribution of the variable of interest y, given ensemble predictions X, is modeled by
a parametric distribution, Fp, with parameters @ = g(X ) depending on the ensemble predictions
via a link function g. The standard EMOS model for temperature utilizes ensemble forecast of tem-
perature X 2™, as sole predictors and assumes a Gaussian forecast distribution 3| X™ ~ N (11, o),
the parameters of which are linked to the ensemble mean and standard deviation via affine functions
p=a+b-mean(X”™) and o = ¢+ d - sd(X"™™). The model coefficients a, b, ¢, d vary over sta-
tions (for local adaptivity), and are estimated by minimizing the mean continuous ranked probability
score, CRPS(F,y) = foo (F(z) - 1(y < z:))2 dz, over a training set (Jordan et al., [2019).

-0
3.1 NEURAL NETWORK METHODS FOR POST-PROCESSING

A key limitation of the EMOS approach is that incorporating additional predictors beyond forecasts
of the target variable is challenging since it would be necessary to specify the exact functional
form of the dependencies of the distribution parameters on all input predictors. To address this
limitation, Rasp & Lerch|(2018) propose to obtain the distribution parameters as the output of a NN
that is able to flexibly learn nonlinear relations between arbitrary input predictors and the distribution
parameters in an automated, data-driven manner. Their distributional regression network (DRN)
illustrated in the bottom part of Figure[I]is estimated as a single model jointly for all stations, using
the CRPS as a custom loss function (D’Isanto & Polsterer} [2018). Station embeddings which map
the station identifiers to a vector of latent features used as additional inputs to the NN generate
local adaptivity in the jointly estimated model. The results presented in [Rasp & Lerchl (2018) and
subsequent research demonstrate the improvements over state-of-the-art-approaches.

3.2 CONVOLUTIONAL AUTOENCODERS AS INFORMATION COMPRESSOR

An autoencoder (AE) is a NN designed to learn a representation for a dataset by training the network
to attempt to copy its input to its output. Internally, a hidden layer describes an h-dimensional
encoding used to represent the input. Along with the encoder function, a decoder is learned that
produces a reconstruction of the input data from the hidden layer. Here, we consider separate AE
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Figure 1: Schematic illustration of the DRN+ConvAE model.

models for selected weather variables (T2M, Z500, 850U, 850V) which use the spatial fields of the
ensemble mean forecasts as inputs. To account for the spatial structure of the input fields (with a size
of 81 x 81 grid points), we use 2D-convolutional layers for the encoder and corresponding transposed
convolutions for the decoder, and refer to the full model as convolutional autoencoder (ConvAE),
illustrated in the top part of Figure[I] The ConvAE model is estimated separately in a first step, using
the grid point-wise mean squared error as loss function. Min-max normalization is applied to the
individual input fields in order to guide the ConvAE models to focus on the variability across space
within the forecast fields, since the relevant information on the magnitude of the predicted values
is present in the station-specific, interpolated predictors for the DRN model. Details on the model
architecture and training are provided in the supplemental material. As a reference dimensionality
reduction method, we implement a principal component analysis (PCA) approach, which is widely
used for different applications in the atmospheric sciences (e.g., [201T).

3.3 INCORPORATING SPATIAL INPUTS INTO NN-BASED POST-PROCESSING

To incorporate spatial information into the DRN model, mean forecast fields from the ensemble
are used as input to the ConvAE model which was separately estimated in a first step and yields a
corresponding latent space representation as output. This latent space representation is then used as
additional input to the DRN model in addition to the station-specific (interpolated) predictions, the
station information and the embeddings. This combined model will be referred to as DRN+ConvAE
model and is illustrated in the entirety of Figure [l We only consider spatial inputs from single
predictors (T2M, 2500, 850U, 850V), T2M combined with Z500, or all of them. To ensure compa-
rability, the architecture and training procedure for the DRN+ConvAE models are identical to those
of the DRN model without spatial inputs. We proceed analogously for the DRN+PCA models. See
Appendix [AT]in the supplementary material for details on the model architecture and estimation.
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Figure 2: Grid point-wise MSE of reconstructions by the ConvAE and PCA models as function of
the dimension h of the latent representation for several targets on the training set (left) and the test
set (right).

4 RESULTS

Figure 2| shows the mean squared error (MSE) of the ConvAE and PCA reconstructions. Since they
are computed on the 0-1 scale of the normalized inputs, the errors of the different target variables
are directly comparable, Not surprisingly, larger values of the dimension of the latent representation
h yield better reconstructions. The T2M and Z500 forecast fields are generally easier to reconstruct
from the low-dimensional representation than the wind fields which are characterized by small-scale
structures. Overall, the ConvAE models show lower reconstruction errors compared to the PCA
models. The differences are most pronounced for lower-dimensional representations, and forecast
fields of Z500 and the wind components, but become negligible for larger values of h. Exemplary
reconstructions of the ConvAE models are shown in the supplemental material in Appendix [A.2]
Compared to the corresponding PCA reconstructions (not shown), in particular small-scale variabil-
ity is notably better represented by the ConvAE models for lower values of h.

Since our focus is on incorporating spatial features, we refer to [Rasp & Lerch| (2018)) for detailed
results on the DRN model, including comparisons to other post-processing approaches. Figure [3h
summarizes our key results by showing the mean CRPS (averaged over all stations and dates in
the test set, with lower values indicating better forecasts) of the DRN+ConvAE and DRN+PCA
models as functions of the corresponding dimension of the latent representations for different sets
of spatial inputs. Improvements over DRN can be observed for DRN+ConvAE models that include
spatial inputs from T2M, Z500, and their combination, for latent dimensions A < 8. Generally,
the forecast performance decreases with increasing h, likely since the most relevant information is
already contained in lower-dimensional spatial representations. Note that the reconstruction quality
of the ConvAE and PCA models might only be of minor importance for the post-processing task
of the combined model, since the added reconstruction quality may be counteracted by making it
more difficult for the DRN part of the model to extract the relevant information. Incorporating
representations from wind fields notably deteriorates the results compared to the plain DRN model.
Directly comparing DRN+ConvAE and DRN+PCA models, it is evident that in contrast to their
ConvAE counterparts, adding PCA representations only provides some minor improvements over
DRN for T2M and h = 2.

Focusing on a comparison of the local effects of incorporating spatial inputs, Figure [3p shows the
station-specific improvement in the mean CRPS. We here compare one DRN+ConvAE model to
DRN, a CRPS skill score (CRPSS) value of 0.1 thus indicates an improvement of 10% in the mean
CRPS over DRN at that station. Including spatial inputs in the DRN+ConvAE model results in
improvements at 96% of the stations, with Diebold-Mariano tests of equal predictive performance
(Diebold & Marianol [1995) indicating that around two thirds of those improvements are statistically
significant at a level of 0.05. A comparison of the importance of the input features of the two models
suggests that the DRN+ConvAE model is indeed able to extract some useful information from the
ConvAE representations, see the supplemental material in Appendix for details.
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Figure 3: Mean CRPS of DRN+ConvAE (left) and DRN+PCA models (right) for different spatial
inputs and values of h, with the CRPS of the DRN model shown as dashed black line (a); and map of
station-specific improvements in terms of the CRPS of the DRN+ConvAE model with spatial T2M
inputs for h = 2, using the DRN model without spatial inputs as reference (b).

5 CONCLUSIONS

We demonstrated how information from large-scale spatial forecast fields of meteorological vari-
ables can be incorporated into post-processing models via convolutional autoencoders as informa-
tion compressors. Our post-processing models with added spatial inputs outperform state-of-the-art
models that utilize station-specific predictors only. Regarding the design of the combined post-
processing model with spatial inputs, we noted the critical need to balance the dimension of the
latent representation of the spatial forecast fields: While larger values of & result in better recon-
structions by the ConvAE models, they decrease the forecast performance of the corresponding post-
processing model. In addition, increasing the embedding dimension compared to the model without
spatial inputs was critical to obtain improvements, likely because this allows the post-processing
models to learn make more locally adaptive use of the added spatial inputs. While our focus was on
using NN-based post-processing models, it would also be interesting to incorporate the spatial rep-
resentations as additional predictors into other post-processing models, such as quantile regression
forests (Taillardat et al.| 2016)) or gradient boosting extensions of EMOS (Messner et al., 2017)).

An alternative route towards post-processing models based on spatial input data is given by the direct
use of convolutional NNs (CNNs). Forecast fields of several variables can be considered as input,
and could be combined with a DRN part (variants of this approach have been proposed recently in
Scheuerer et al., |2020; [Veldkamp et al., 20215 |Chapman et al., [2022} |L1 et al., [2022)). A comparison
to the methods proposed here is not straightforward since those approaches typically use gridded
observations as target variables, but provides an interesting starting point for future research.

Finally, the ConvAE models proposed here raise several interesting methodological questions.
While we only used mean fields as inputs, it would be interesting to consider probabilistic encoders
in order to make better use of the ensemble structure of the ensemble members’ forecast fields,
which can be interpreted as samples from a spatial probability distribution. Further, a meteorologi-
cal analysis of the learned representations of the spatial forecast fields, for example considering links
to weather regimes, would not only be interesting from a meteorological perspective, but might also
allow for better incorporating physical information and constraints into the forecasting models.
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A APPENDIX: SUPPLEMENTAL MATERIAL

A.1 MODEL SPECIFICATION DETAILS AND SENSITIVITY EXPERIMENTS

CONVAE MODELS

The final architecture of the ConvAE model shown in Figure [T] was chosen based on preliminary
experiments on the training dataset. The encoder part consists of a sequence of convolutional (with
16, 8 and 4 filters) and max-pooling layers. The 2D-convolution layers use 3 x 3 kernels with a stride
of 1, zero-padding and a ReL.U activation. The number of filters and the kernel size were chosen to
balance computational costs and representation quality, but the results were generally fairly robust to
changes in these parameters. The max-pooling layers use a window size of 3 x 3 and a stride of 1. In
the central dense encoding layer, we apply a linear activation function and ReLU activations in the
neighboring dense layer. Following the standard practice in the extant literature (e.g., |Ronneberger
et al.,[2015) the decoder part of the ConvAE model is based on 2D-transposed convolution layers,
here with 4, 8 and 16 filters, a decoder kernel of size 9 x 9 and ReLU activations. The final output is
obtained via a 2D-convolution layer with sigmoid activation. The model is trained using the Adam
optimizer with a learning rate of 0.001 and a batch size of 32. To prevent overfitting, we set the
maximum number of epochs to 100 and apply early stopping with a patience of 10. Thereby, data
from 2007-2014 is used for training, and data from 2015 as a validation dataset.

DRN AND DRN+CONVAE/PCA MODELS

The DRN and the DRN+ConvAE/PCA models share a common architecture to enable a fair com-
parison and a direct investigation of the effect of including spatial inputs. All models use two hidden
layers with 100 nodes and ReLU activations. While including a second hidden layer deviates from
the choices in |Rasp & Lerch|(2018)), we found that this has only a negligible effect on the perfor-
mance of the DRN model, but does improve the models with spatial inputs. The models are trained
using the Adam optimizer with a learning rate of 0.002 for a maximum of 100 epochs, and early
stopping with a patience of 10 is applied to prevent overfitting. We produce an ensemble of NN
models by repeating the model estimation 10 times, and aggregate the predictions by averaging the
distribution parameters. Data from 2007-2014 is used for training, and data from 2015 for validation
purposes. An important tuning parameter is the dimension of the station embeddings. While |[Rasp
& Lerch| (2018)) use two-dimensional embeddings, subsequent research demonstrated the usefulness
of choosing larger values (e.g., Bremnes| 2020} |Schulz & Lerchl [2022). We chose an embedding
dimension of 15 for all models. Supplementary Figure [I|shows the mean CRPS as functions of the
embedding dimension and indicates that for the models with added spatial inputs, choosing larger
than 2 improves the forecast performance, wheres the effects on the DRN model are relatively minor.
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Supplementary Figure 1: Mean CRPS over the test set as a function of the embedding dimension for
the DRN+ConvAE and DRN+PCA models, with different types of spatial inputs and h = 2. The
black dashed line indicates the mean CRPS of the DRN model without spatial inputs.
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A.2 EXEMPLARY CONVAE RECONSTRUCTIONS
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Supplementary Figure 2: Exemplary ConvAE reconstructions of randomly selected examples from
the test dataset for different values of the encoding dimension .
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A.3 FEATURE IMPORTANCE

Supplementary Figure 3] shows the permutation-based feature importance of the 12 most important
predictors of the DRN+ConvAE and the DRN model. To compute feature importances, we follow
Rasp & Lerch|(2018) and|Schulz & Lerch|(2022), and measure the decrease in terms of the CRPS in
the test set when randomly permuting a single input feature, using the mean CRPS of the respective
model based on unpermuted input features as reference.

Overall, the rankings among the most important features are relatively consistent among the two
models, but a decreased importance can be observed for the DRN+ConvAE model for most of the
features compared to the DRN model, most notably for the station altitude and orography. The fea-
ture importance of the ConvAE representations of the spatial T2M inputs ranks seventh on average,
but shows a notably larger variability over repetitions of the model fitting procedure compared to the

other inputs.
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Supplementary Figure 3: Permutation-based feature importances of the 12 most importance predic-
tors of the DRN+ConvAE (with T2M inputs and A~ = 2) and DRN model shown on a logarithmic
scale. The input features are colored by type according to the illustration in Figure [T in the main
text, see Rasp & Lerch| (2018)) for abbreviations of the interpolated NWP variables. The boxplots
indicate the variability of the importances across the 10 repetitions of the model fitting procedure.
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