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ABSTRACT

Astrophysical light curves are particularly challenging data objects due to the
intensity and variety of noise contaminating them. Yet, despite the astronomi-
cal volumes of light curves available, the majority of algorithms used to process
them are still operating on a per-sample basis. To remedy this, we propose a sim-
ple Transformer model –called Denoising Time Series Transformer (DTST)– and
show that it excels at removing the noise in datasets of time series when trained
with a masked objective, even when no clean targets are available. Moreover, the
use of self-attention enables rich and illustrative queries into the learned represen-
tations. We present experiments on real stellar light curves from the Transiting
Exoplanet Space Satellite (TESS), showing advantages of our approach compared
to traditional denoising techniques.1

1 INTRODUCTION

Time series of observed flux –so called ‘light curves’– are one of the most common data products
of space observation. Their analysis enables the precise study of distant objects and phenomena
within and beyond the solar system and the Milky Way including stars (e.g. Christensen-Dalsgaard
et al., 2007), planets (e.g. Charbonneau et al., 2000; Di Stefano et al., 2021) asteroids (Warner et al.,
2009) or black holes (e.g. Beskin & Tuntsov, 2002). However, light curves are often affected by
instrumental, photon and background noise. In addition, the target itself often shows an undesirable
variability2 of similar frequencies to the underlying scientific signal, making an optimal noise filter
difficult to achieve. All these factors render the analysis of light curves challenging, often requir-
ing technical expertise to build specialised pre-processing pipelines before physical modelling and
interpretation.

Although the use of deep learning has started to emerge to successfully address some problems
related to light curves (e.g. Sarro et al., 2006; Wang et al., 2016; Hložek et al., 2020; Shallue &
Vanderburg, 2018; Pearson et al., 2018; Morvan et al., 2020; Nikolaou et al., 2020), these often
address only the later stages of data analysis and are limited to building supervised learning models.
These models are indeed generally trained on scarcely labelled or simulated data and thus suffer
from biases or small training sizes when applied to new or full datasets. On the other hand, there
already exist large datasets consisting of thousands to billions of light curves (e.g. Bakos et al., 2004;
Pollacco et al., 2006; Auvergne et al., 2009; Butters et al., 2010; Borucki et al., 2010) with many
more being generated by existing and future space telescopes. We believe that tailored deep learning
models will be able to leverage these large datasets to improve the efficacy and efficiency of light
curve processing in a self-supervised, semi-supervised or unsupervised manner.

The self-attention mechanism (Parikh et al., 2016) and the Transformer architecture (Vaswani et al.,
2017) have initiated a revolution in the field of natural language processing (e.g. Devlin et al., 2019;

1The code is available in open source at https://github.com/mariomorvan/ICLR22-DTST
2Sometimes referred to as red noise.
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Brown et al., 2020) and later computer vision (Khan et al., 2021). Transformers exhibit good gen-
eralisation, and offer easier training and better scalability compared to Long Short-Term Memory
Networks (Hochreiter & Schmidhuber, 1997). Work is under way to adapt the Transformer archi-
tecture for time series tasks such as forecasting (e.g. Li et al., 2020; Zhou et al., 2021; Woo et al.,
2022). In their study Zerveas et al. (2021) successfully pre-trained a Time Series Transformer via
a masked objective before fine-tuning it for classification and regression. Even though the use of
masked objectives is common in the aforementioned works, here our main objective is to denoise the
time series. The masked objective allows us to solve the problem by means of a proxy imputation
task without requiring any fine-tuning.

Our main contributions consist in: (i) introducing a simple self-supervised framework to perform
time series denoising without access to clean targets; (ii) demonstrating how a Transformer encoder
with minimal modification can perform light curve denoising effectively, leveraging the number and
diversity of available inputs, (iii) producing flexible3 and interpretable predictions by visualising
attention scores associated with imputation and denoising of sequences.

We present experiments on real light curves from the Transiting Exoplanet Survey Satellite (TESS,
Ricker et al., 2015). This is the first time a deep learning model is proposed to try to address both
imputation and denoising on a dataset of light curves.

2 METHODOLOGY

2.1 PROBLEM FORMULATION

Given a univariate time series x = {x1, .., xt, .., xT } ∈ RT we seek to predict its trend4 y ∈
RT which has been corrupted by a noise process ϵ such as xt = yt + ϵt for each time step t.
No assumption is made about the corruption process except its independence from the trend. In
particular, ϵ can be heteroscedastic and non-Gaussian.

Let us consider a generic model f solely fed with corrupted time series, i.e. trained without clean
targets in a Noise2Self setting (Batson & Royer, 2019). After masking a fraction of each input x
with randomly generated masks m, f produces predictions ŷ = f(x) of the same length as the input
but is trained with a regression loss computed solely on the masked values: L(f(x), x,m). This
masked objective guarantees the independence of the predictions with respect to the local values
and their associated noise. If missing values are present in the dataset, they are treated in the same
way as randomly masked values, making the method robust to missing values. The only difference
is that predictions for truly missing values are not included in the calculation of the training loss.

2.2 DENOISING TIME SERIES TRANSFORMER

An overview of the DTST is shown on Figure 1. For each input time series an input mask is gen-
erated combining missing values and artificially masked values (at training only). Masked and
standardised inputs are linearly projected into input embeddings z ∈ RL×D of the model’s dimen-
sion D. Input embeddings corresponding to masked positions are replaced by a learnable vector
of dimension D, inspired by the mask token used in Devlin et al. (2019). This is a robust way of
informing the model of the masked input positions. Additionally, we have found a learnable vector
to perform better than replacing masked values by zero as is often done for time series imputation
models (e.g. Cao et al., 2018; Zerveas et al., 2021; Yi et al., 2020). However using this scheme on
its own affects the quality of the predictions outside the masks and for this reason we replace 10%
of masked values in input with uniformly sampled values between −2 and 2 and do not replace their
projected input embedding by the mask embedding. This setting was the most effective we have
tried amongst several ones listed in Appendix B.

Positional embeddings are then added to the input embeddings to provide positional information.
Since they produced better results than trainable positional embeddings in our experiments we used
the same fixed positional embeddings as in Vaswani et al. (2017). We use a light version of the

3The flexibility of the model lies in its capability to handle inputs with missing values, variable sizes and
generating processes characterised by different variances.

4The ‘trend’ here can contain low frequency variability, aperiodic or periodic patterns.
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Figure 1: Schematic overview of the model learning trend representations of inputs with a masked
objective. Masks represented in shaded blue areas include both missing and randomly masked time
steps during training. At test time, only truly missing values are masked. Yellow modules represent
the time-distributed linear embedding and the prediction head respectively.

original Transformer encoder with the hyperparameters fixed to the values shown in Appendix C.
Each encoder’s output is finally projected back into the input dimension using a distributed D × 1
linear layer.

3 EXPERIMENTS

3.1 DATASET

We present experiments on a dataset of light curves from the TESS satellite, acquired during the first
visit of its first sector in 2018. TESS light curves are challenging because of their length (20, 076
time steps for short cadence data spread over 30 days), their noise level, residual instrumental sys-
tematics and missing blocks.

We select 2 minutes cadence light curves at the Presearch Data Conditioning stage, i.e. after removal
of the main instrument systematics, cosmic rays and background noise with the standard TESS
pipeline (Jenkins et al., 2016). After rejection of 50 light curves with negative flux, the dataset
contains 15839 light curves. We selected 20% of all light curves uniformly at random for testing
and the remaining 80% for training and validation.

3.2 TRAINING AND EVALUATION

Because of their length we randomly crop each light curve to select 400 consecutive time steps. A
random mask is then generated before subtracting the mean and dividing by the standard deviation
of the non-masked values for each input segment. This procedure can be seen as a data augmentation
step, as the combination of cropping and masking operations will produce different inputs at each
epoch.

For training the DTST we use the noise-scaled masked mean absolute error (NMMAE) defined as:
NMMAE(ŷ, x,m) = 1

M∗n(x)
∑T

t=1 mt|xt − ŷt|, where m is a binary mask equal to 1 for masked

timesteps and 0 otherwise, ŷ is the model’s output prediction, M =
∑T

t=1 mt is the total number
of masked steps in x and n(x) is an estimate of the local noise by computing the average moving
standard deviation with a window of size 10 and a step of 5. Compared to the mean-squared error,
the mean absolute error (MAE) is more robust to outliers while rescaling using n(x) helps to account
for different variabilities in the training data. Predictions for the full light curves are then obtained
by stitching together the predictions for segments of 400 time steps. In practice, evaluation segments
are designed so as to allow overlaps of 50 steps and remove the outer 25 steps for each prediction.
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As evaluation metrics we use the MAE and the inter-quartile range (IQR) of the detrended light
curve as a measure of the residual noise, both expressed as percentages of the stellar flux. For both
measures, lower values are desirable.

We compare the DTST to the median filter and Tukey’s biweight algorithms with implementations
from Hippke et al. (2019) as baselines. These have shown optimal or near-optimal performance in
removing the noise prior to detecting exoplanets in Kepler and TESS data. Both methods require to
set the window length –in time units for Tukey’s algorithm and in number of cadences for the median
filter. For comparison we select two window lengths: a long window of 6 hours (∼ 300 timesteps)
which is adapted for exoplanet transit detection and a short window of ∼ 2 hours which provides
comparable denoising scores to the DTST but overfits some of the high frequency variability.

3.3 RESULTS

After experimenting with various architectures and masking scenarios (see appendices B ) on the
training set, we evaluated the DTST and the baselines on the test set. Results are presented in
Table 1. On average, the DTST provides the smallest residual noise and auto-correlation out of the
several baselines evaluated here. The difficulty for traditional techniques here lies in reconciling
the diversity of the stellar processes composing the dataset, and it is therefore understandable that
a single cadence-based or window-based filter with a fixed window size will either fail to denoise
targets with high variability or overfit the noise on those with low variability.

Table 1: Denoising performance on 3168 TESS light curves from Sector 1. Averaged errors are
given in percentage of the stellar flux. Window sizes considered by the three algorithms to make
predictions are shown on the second line.

METRIC MEDIAN FILTER TUKEY’s BIWEIGHT DTST
65 steps 181 steps 2 hours 6 hours 400 steps

IQR 0.393% 0.465% 0.398% 0.469% 0.385%
MAE 0.244% 0.286% 0.245% 0.286% 0.235%

We show examples of predictions in Figure 2 for different test samples showing a range of variability
patterns. We corrupted the two inputs on the left (Figures 2a and 2b) with random masks similar
to those used during training. The predicted time series shown in red on each upper sub-plot plot
shows very good agreement with the expected trend for both masked and unmasked input time steps.
In dashed green line is shown a the result of a median filter on each light curve with a window of 65
cadences (equivalent to 2 hours). While it provides good results for slowly varying stellar processes
(Figure 2b), this setting fails to account for faster processes (Figures 2a and 2c) or inputs with many
missing values (Figure 2d).

On each third sub-plot we show the residual light curve in units of stellar flux. The associated auto-
correlation function (ACF) of the model-fit residual is plotted on the last subplot of each figure.The
ACF is a useful tool to analyse the significance of residual time correlations as in Figure 2c. Target
140045538 indeed shows bursts of flaring activity which are not predicted by the DTST and there-
fore leave a significant signature in the ACF. As short transients or planetary transits may lie at the
border between noise, outliers and signals, further fine-tuning of the model may be needed for either
predicting or ignoring them consistently.

3.4 1D ATTENTION MAPS

We use Rolling Attention (Abnar & Zuidema, 2020) to combine the attention scores of all layers
and heads. We direct the reader to Appendix A for more details and examples. This enables us to
visualise which parts of the inputs received more attention for producing the outputs, both during
training and validation. Thus we are using the generated attention maps both for orienting the
model’s development and interpreting its predictions.

Our first observation is that both input tails often receive high rolling attention scores. This is
understandable as these lack context on either their left or right and therefore prove more challenging
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(b) TESS Target 269829656
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(c) TESS Target 140045538
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(d) TESS Target 92257800

Figure 2: Diagnosis of predictions for four different test stars. On the left are two examples with
random artificial masks (in orange) mimicking the training process. On the right are two untouched
inputs, where the blue shaded masks indicate truly missing data in input. Each sub-figure contains
from top to bottom: (i) inputs as black dots, the DTST’s predictions as red line, and median filter
with window of 65 cadences as green dashed line, (ii) rolling attention time series scaled between
0 and 1, (iii) the star-normalised residual errors and (iv) the auto-correlation function with missing
data ignored.

to predict. We also observed that large masked regions receive generally less attention than non
masked regions. This is in fact a useful check during the model’s development to verify if the
model manages to distinguish between the mask representation and the real values. Furthermore,
values surrounding the identified gaps often show greater attention than average, probably as they
are particularly relevant for the prediction of masked values. Finally it is often interesting to look at
the attention patterns for time steps corresponding to unexpected flux values. Those are sometimes
ignored such as the rightmost flaring event on Figure 2c or conversely receive more attention than
average when they can inform predictions.

4 CONCLUSION

In this work we presented a conceptually simple framework to denoise time series via a proxy impu-
tation task. We performed experiments and showed how such an approach based on a Transformer
encoder architecture is effective at removing the noise in light curves from the TESS satellite. Com-
pared to traditional techniques, this model can offer flexibility and increased performance when
pre-processing large datasets of light curves. Further works will extend these experiments to other
real and simulated datasets while assessing the generalisation power and possible gain from using a
pre-trained model. Finally we would like to use this approach as a basis for downstream tasks such
as event detection, imputation and upsampling.
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A 1D ATTENTION MAPS

Attention from the model’s output to the input time series is computed using Attention Rollout
(Abnar & Zuidema, 2020). This procedure consists in recursively multiplying matrices of attention
weights through the transformer layers, thus accounting for mixing of attention in the network.
Figure 3 shows more examples of predictions overlayed with their corresponding input with Rollout
Attention used to highlight time steps with greater attention.
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Figure 3: 1D attention maps computed with Attention Rollout and overlayed with predictions (red
lines) for 16 random light curves from TESS dataset. The size and opacity of individual point inputs
is directly proportional to the Attention Rollout values.

B MASKING STRATEGY

Masking Patterns We explored various generating mechanisms for the distributions of masked
values in each input. Given a fixed ratio of values to mask, we tested using a Bernoulli distribution
for time-independent masking and a geometric distribution over masked blocks lengths. The geo-
metric distribution was used to impose longer masks and thus a more challenging imputation task
to the model. Mean block lengths of 5, 10 and 20 were tested and final results were presented for a
window of 10 as it offered the best compromise between the length of signals to impute and denois-
ing performance.Intuitively, the length of masked blocks will control the degree of temporal locality
of the noise processes to remove, and using wider masked regions will indeed force the model to
make use of longer-term dependencies to make accurate predictions.

Masking Ratios We set the masking ratio to 30% after experimenting with 10%, 20%, 30%, 40%
and 50%. Heuristically, increasing the masking ratio speeds up training but also affects performance
as fewer inputs are available for prediction. When values are missing in the inputs, the masking ratio
is considered with respect to the number of non-missing time steps. This maintains the ratio of data
used for training constant while avoiding degenerate cases where the random mask would be empty
or would cover the entirety of the non-missing input.

Replacement Strategy We considered various replacement strategies for masked input values: (i)
replacing by zero, (ii) by a uniformly random value centred on zero, (iii) by a special learnable
vector (inspired by Devlin et al., 2019) in the model’s space, and (iv) keeping the original values.
Case (iv) was quickly discarded as it led to overfitting the noise. While option (iii) offered the best
imputation performance, we observed that it performed poorly on its own for denoising the full
inputs, and that this issue was mitigated by using case (ii) for a random fraction of input time steps,
even as small as 10%. This can be understood as an extra corruption operation on the input, thus
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forcing the model to provide coherent predictions even outside the regions whose embeddings are
more explicitly masked with a dedicated vector.

C HYPERPARAMETERS

Fixed hyperparameters for all presented experiments are shown in Table 2.

For training we used Adam (Kingma & Ba, 2015) optimiser with learning rate 0.001 and β =
(0.9, 0.999).

Table 2: Hyperparameters

PARAMETER VALUE

Learning rate 0.001
Batch size 64
Dim. model 64
Dim. feedforward 128
Num layers 3
Num. heads 8
Masking ratio 30%
Average masking length 10

D COMPUTATIONAL EFFICIENCY

Even though training the DTST on thousands of time series can take up to several hours on a single
V100 GPU, its inference cost remains very low with around 10 µs for a full TESS light curve
unfolded in windows of length 400 passed as a batch of size ∼ 60. This is to be compared with
∼ 50 µs and ∼ 173 µs per TESS light curve for the efficient Wotan implementations of biweight
and median filter respectively.

The O(T 2) complexity in space and time of vanilla attention could be mitigated by using sparse
attention (see e.g. Zhou et al. (2021) in O(T log T ), Wang et al. (2020) in O(T )). Additional
experimental studies would need to be performed to evaluate their respective impact on performance
and on the trade-off between long sequences and full attention.
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