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Figure 1: Geographical location of reservoirs in ReaLSAT-R database. Red points (853) represents reservoirs that were reported
in GRanD as well. Yellow points (14620) represents reservoirs that are unique to ReaLSAT-R.

ABSTRACT
Reservoirs play a crucial role for human sustenance as they provide
freshwater for agriculture, power generation, human consumption,
and recreation. A global database of reservoirs that provides their
location and dynamics can be of great importance to the ecolog-
ical community as it enables the study of the impact of human
actions and climate change on fresh water availability. This paper
presents a new database, ReaLSAT-R (Reservoir and Lake Surface
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Area Timeseries-Reservoirs) that has been created by analyzing
spectral data from Earth Observation (EO) Satellites using novel ma-
chine learning (ML) techniques. These ML techniques can construct
highly accurate surface area extents of water bodies at regular inter-
vals despite the challenges arising from heterogeneity and missing
or poor quality spectral data. The ReaLSAT-R database provides
information for 15473 reservoirs between 0.1 and 100 square kilome-
ters in size that were created after 1984. The number of reservoirs
identified in ReaLSAT-R is substantially larger than those available
in GRanD, which is the state of the art database maintained by
the ecological community, and contains only the static shape of a
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reservoir. ReaLSAT-R contains the surface area time series for new
reservoirs created since 1984 as well as 3274 others that were cre-
ated before 1984 (reported in GRanD database), thus permitting a
global view on the state of these reservoirs that are being impacted
by changing climate and human actions. The visualization of these
reservoirs and their surface area time series is available online via
ReaLSAT-R web interface. This paper reports the summary of the
second version of the database. The database was formerly called
as GLADD-R (Global Lake Dynamics Database-Reservoirs) and its
first version was presented in KDD ’19 Workshop on Data Mining
and AI for Conservation.

KEYWORDS
physics guided machine learning, rank aggregation, global reservoir
dataset, surface water dynamics, change detection

1 INTRODUCTION
Reservoirs (dams and impoundments) have been constructed for
millennia to provide persistent fresh water for agriculture, industry,
human consumption, flood mitigation, reliable navigation, energy
production, waste disposal, and recreation. The need for accessi-
ble and high-quality surface water has grown with the changing
needs of the civilization. Few human alterations of the Earth’s wa-
ter cycle rival the impacts of reservoir construction, including the
unintended negative effects on water quality and contamination,
habitability to native species, fish migration, and flooding disasters
when infrastructure fails. A global database of reservoirs that pro-
vides their location and dynamics can be of great importance to the
ecological community as it can enable the study of the impact of
human actions and climate change on fresh water availability.

Currently, GRanD database [6] is the largest database that pro-
vides information on reservoirs globally. The first version of this
database (v1.1) was released in 2011 which provided the locations of
6862 reservoirs and a static snapshot of reservoir’s attributes such
as dam height, depth of the reservoir, average discharge, average
surface area, and reference shape. A new version of the database
(v1.3) was released in February 2019 and it provides information
for an additional 458 reservoirs (7320 reservoirs in total). The data-
base was created through manual curation effort which impact its
completeness and makes it difficult to update over time. Moreover,
the database does not provide temporal information about their
surface area dynamics.

This paper presents a new database, ReaLSAT-R (Reservoir and
Lake Surface Area Timeseries-Reservoirs) that has been created by
analyzingmulti-spectral data fromEarthObservation (EO) Satellites
using novel machine learning (ML) techniques. Earth Observation
datasets, which are available globally at regular time intervals, not
only enable monitoring of surface area dynamics of water bodies
but can also be used to identify construction of new reservoirs au-
tomatically at a global scale. In particular, spatially and temporally
explicit EO data can be used to label each pixel on Earth as either
land or water at any given timestep using state-of-the-art machine
learning approaches. If these labels are perfect, then they can be
monitored over time to track changes in surface water at a location
or a region of interest. However, despite their promise, machine
learning methods suffer from a number of challenges when applied

to global scale EO data, leading to erroneous as well as missing
class labels. First, EO datasets are generally plagued with noise,
outliers and missing data, due to sensor anomalies and atmospheric
disturbances such as clouds, aerosols and sun angle. Second, even
without the above data acquisition related issues, remote sensing
data might not be able to distinguish certain classes, such as algae
on water, as they appear similar to land. Third, these challenges
become even more severe at global scale due to high heterogeneity
in the data, as locations with same input values can belong to either
land or water depending on their geographical context. Hence, the
state-of-the-art machine learning methods for creating water extent
maps show unsatisfactory performance especially in the context of
identifying dynamics of water bodies at a global scale [1].

To overcome the aforementioned challenges, a novel machine
learning framework, ORBIT (Ordering Based Information Transfer)
[2–5] was developed. This framework (described in more detail in
Section 2) makes use of the inherent ordering constraint among
pixels due to the earth’s topography/elevation. The elevation order-
ing based constraint enables the framework to identify and correct
physically inconsistent labels. The ORBIT framework [2, 3] was
used to construct the ReaLSAT database.

This paper reports the summary of the second version of the data-
base. The database was formerly called as GLADD-R (Global Lake
Dynamics Database-Reservoirs) and its first version was presented
in KDD ’19 Workshop on Data Mining and AI for Conservation.
The version 2.0 of the ReaLSAT-R database provides information
for 16651 reservoirs between 0.1 and 100 square kilometers in size
that were created after 1984. The number of new reservoirs iden-
tified in ReaLSAT-R is substantially larger than those available in
GRanD (only 853 out of 15473 reservoirs are reported in GRanD).
Note that GRanD contains only static shape of the reservoir. In
contrast, ReaLSAT-R web interface contains the surface area time
series for all new reservoirs created after 1984 as well as 3274 others
that were created before 1984 (reported in GRanD database), thus
permitting a global view on the state of these reservoirs that are
being impacted by changing climate and human actions.

ReaLSAT-R-2.0, was created using LANDSAT based land/water
classification maps available for the period 1984 to 2015 at monthly
temporal scale [7]. Even though this pixel based classification prod-
uct (henceforth referred to as GSW dataset) is considered as the
state-of-the-art, it suffers from significant classification errors and
missing data due to aforementioned challenges in analyzing EO
data. Moreover, GSW dataset provides information at pixel level
and thus surface area variations of individual water bodies are not
readily available. ORBIT framework provides a robust way to create
more accurate and complete classification maps for individual water
bodies using erroneous and incomplete pixel based classification
products. As an illustrative example, Figure 2 shows labels before
and after correction for lake Naivasha in Kenya in February 2012.

Reservoirs show a very specific pattern in their surface area vari-
ation which can be used to identify them automatically. Specifically,
reservoirs show a sudden increase in their surface area after they
become operational and this increase tends to persist over time.
Thus, after obtaining high quality classification maps for individual
water bodies, time series analysis can be performed to automatically
distinguish reservoirs from natural lakes. As an illustrative example,
Figure 3 (top) shows surface area dynamics of a reservoir on the
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Figure 2: An illustrative example showing utility of the la-
bel correction step. Blue color represents water, green rep-
resents land, yellow represents pixels out of buffer region,
and red represents missing labels. (left) Classification labels
from GSW dataset. (right) Classification labels after correc-
tion using ORBIT framework

Sambito River in Brazil. The sudden increase in area is evident as
the surface area of the reservoir increased from 0 to approximately
12 square kilometers in just three months. The surface area time
series also makes it easy to identify seasonal changes and reduction
in the size of the reservoir over time.

The rest of the paper is as follows: Section 2 provides an overview
of the ORBIT framework. Section 3 provides a summary of the
processing pipeline used to create the ReaLSAT-R database. Section
4 provides some highlights of the ReaLSAT-R database and finally
Section ?? concludes the paper with upcoming future updates.

2 THE ORBIT FRAMEWORK
The ORBIT framework makes use of the inherent ordering con-
straint among instances/pixels to improve the accuracy of classifi-
cation maps. The key idea is the following - if a location is filled
with water then by laws of physics all the locations in the basin
that have lower elevation should also be filled with water. Thus,
physically inconsistent labels that do not adhere to this physical
constraint can be detected.

Figure 4 illustrates the utility of this constraint using a toy ex-
ample. Given an elevation ordering (𝜋 ) and a set of potentially
erroneous labels at any given time step 𝑡 , the aim is to estimate
correct labels that are physically consistent with the elevation or-
dering. For a given elevation ordering of N instances, there are
only N + 1 possible sets of labels that are physically consistent. For
example, Figure 4 (b) shows 8 possible sets of physically consistent
labels for 7 locations shown in Figure 4 (a). In the absence of any
external information about these labels, ORBIT framework adopts
the maximum likelihood estimation approach. Specifically, it makes
an assumption that majority of the input labels are correct and
hence selects the set of physically consistent labels that matches
the most with input labels. For example, Figure 4 (c) shows the
erroneous input labels and 4 (d) shows the selected set that matches
the most with input labels. In this illustrative example, location F is
detected as erroneous and its label is changed from water to land.

Note that good quality elevation information is not explicitly
available for most water bodies in the world. To overcome this
challenge, ORBIT framework uses a rank aggregation based strategy

Figure 3: An illustrative example of surface area dynamics
of a reservoir on Sambito river in Brazil (latitude: -6.180322 ,
longitude: -41.978494). (top) Surface area time series using
ReaLSAT-R methodology. (bottom) High resolution aerial
imagery of the reservoir. The zoomed-in inset shows the
dam of the reservoir.

Figure 4: An illustrative example showing elevation order-
ing based label correction process

[5] to simultaneously estimate inherent elevation ordering and
physically consistent labels using an Expectation-Maximization
framework.

Furthermore, in most situations, a water body grows and shrinks
smoothly (except sudden events such as floods) i.e. surface extents
of nearby dates are likely to be very similar. Hence, incorporating
temporal context in the label correction process can lead to further
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improvement in the label accuracy. Current state-of-the-art meth-
ods mainly enforce the temporal consistency either for each pixel
individually (e.g. majority filters in time) or use a given pixel’s tem-
poral and spatial neighborhood to obtain temporal consistent labels.
As shown in [5], these methods perform poorly when noise and
missing data is also spatially and temporally auto-correlated which
is very common in our application. Moreover, existing methods
tend to remove real changes in labels as well because they enforce
labels in nearby time steps to be same.

ORBIT framework [2] uses elevation ordering to enforce tem-
poral consistency in total area values instead of consistency in
labels of individual pixels. Temporal consistency in total area (sur-
face extent) is a more realistic constraint and it also preserves real
dynamics better than existing methods.

3 PROCESSING PIPELINE
As mentioned earlier, existing pixel based classification products
do not provide information for individual water bodies separately.
In this section, we describe the processing pipeline that was used
to create high quality surface area dynamics of individual water
bodies from erroneous pixel based information. The high quality
surface area dynamics was then used to distinguish reservoirs from
natural lakes.

3.1 Pixel based land/water label generation
This step involves classification of EO data to produce land/water
label at different timesteps. In the current version, we used the
GSW dataset as the source of pixel based classification maps. [7].
The GSW dataset was created by analyzing the entire LANDSAT
archive from March 1984 till October 2015. For each month a global
land/water mask is available where pixels are labeled as either
land, water or unknown. The GSW dataset is the state-of-the-art
classification product at LANDSAT scale. The algorithm uses a
decision tree framework to assign each pixel to one of the three
categories. Instead of training decision rules from the data directly,
the authors used visual analytics and human in the loop strategy
to identify cluster hulls in the feature space (which includes raw
multispectral image bands and derived indices used by remote sens-
ing community) to delineate regions belonging to different classes.
These cluster hulls were then converted into equations for the deci-
sion tree. Ancillary data such as glacier masks, lava mask, mountain
shadow mask, and cloud mask, were used to remove potentially
false water labels. It is worth noting that ORBIT framework is not
dependent on GSW dataset. If a new multi-temporal product is
released in future, ORBIT framework can be applied on top of the
new dataset as well.

3.2 Lake Polygons Database Generation
To identify locations and reference shape of lakes around the world,
we performed connected component analysis on the GSW dataset’s
"occurrence" layer. The "occurrence" layer provides a number be-
tween 0 and 100 for each pixel, which represents the percentage
of months the pixels was observed as water. We first binarized the
layer by selecting pixels with percentage value greater than 10. The
threshold value of 10 was used to avoid spuriously labelled pixels
from being considered as potential water bodies. Once the binary

layer is obtained, we performed a connected component analysis
and considered each connected component as a water body in our
database. Figure 5 illustrates the database generation process on
a small region in USA. The top image shows the GSW dataset’s
"occurrence" layer. The color scheme goes from light blue to dark
blue as the "occurrence" layer value increases from 0 to 100. The
middle figure shows the binary mask created by thresholding the
top image. Finally, this binary mask is used to extract individual
connected components (sets of contiguous pixels). In this image,
each connected component is shown in a different color.

Figure 5: An illustrative example showing the database
generation process on a small region in USA. (top) GSW
dataset’s "occurrence" layer. (middle) binary mask created
by thresholding the top image. (bottom) connected compo-
nent image where each component is being shown in a dif-
ferent color.

Using these reference shapes, we extracted pixel-based land/water
label at monthly scale for each lake individually. To avoid including
other nearby lakes in the buffer, we further prune the buffer region
using an automated approach as described in [3].

3.3 Label Correction
If the pixel-based land/water labels were accurate and complete,
just counting the number of water pixels for each month would
have provided area and its variation at the lake level. However,
these maps tend to suffer from large amounts of missing data and
labelling errors. Thus, these land/water label cannot be used directly
to obtain robust surface area dynamics. ORBIT framework was used
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to correct erroneous labels as well impute missing labels. This is
the most crucial step for achieving robust land/water labels.

3.4 Identification of Candidate Reservoirs
Once the improved land/water labels are obtained for each lake, we
count the number of water pixels for each month to create surface
area time series for each water body. For each timestep in a time
series, a score is computed which reflects the sudden and persistent
increase in surface area values around that timestep. The maximum
score across all timestep of a timeseries is used as an indicator of
the reservoir construction activity. All the water bodies that had the
score greater than a certain threshold are considered as candidate
reservoirs. To ensure reliable estimation of sudden increase in the
area of the water body, a minimum time-window of two years is
used before and after the timestep under consideration. Due to this
constraint, ReaLSAT-R reports dam construction activity between
1984 and December 2012 even though the surface area dynamics is
available from March 1984 till October 2015.

3.5 Manual Verification of Candidate
Reservoirs

All candidate reservoirs were manually verified by visual inspection
using high resolution satellite imagery. To facilitate the manual
verification process, a web interface was developed that displayed
all the candidate reservoirs. The interface provided the ability to
zoom-in on a high resolution satellite imagery background layer
which was used to identify the dam structure or the impoundment
wall. In some cases, especially reservoirs built for mining, agricul-
ture, or just as a lake in a residential neighborhood, such a barrier
is not visible. But even in these cases, we were able to verify the
sudden appearance of the reservoir using Google Timelapse. Fi-
nally, if the annotators were not able to decide whether a candidate
is a reservoir or not, it was marked as unknown and hence was
excluded from the final set of reservoirs. The interface enabled the
user to visualize and tag a candidate reservoir in 30 seconds on an
average. The manual verification was done by three co-authors in
a span of few days.

Note that the threshold (described in previous subsection) was
chosen somewhat arbitrarily. If we choose a strict threshold, it
would lead to fewer candidates being rejected by the annotators but
would also lead to a smaller number of reservoirs detected. On the
other hand, if we choose a less strict threshold, we would be able
to get a larger number of true reservoirs but it would take more
human work for verification. So, for this version of the database, we
chose a threshold such that manual verification does not become
too cumbersome.

4 REALSAT-R: HIGHLIGHTS
ReaLSAT-R-2.0 provides location and surface area dynamics of
15473 reservoirs built between 1984 and 2012 globally. Out of 15473
reservoirs reported in ReaLSAT-R, only 853 were also reported in
GRanD. Thus, ReaLSAT-R provides information about an additional
14620 reservoirs that are not in GRanD. This highlights the utility
of the automated machine learning approach to creating such a
database on a global scale with minimum manual effort.

Figure 6 (top) shows the distribution of these reservoirs across
different continents while Figure 6 (bottom) shows the cumulative
distribution of the number of reservoirs constructed after 1984 in
different continents. The majority of dam construction has occurred
in Asia and South America since 1984, and the rate of construction
in North America has declined significantly.

Figure 6: Distribution of reservoirs in ReaLSAT-R-2.0. (top)
Year-wise distribution of reservoirs in ReaLSAT-R-2.0 across
different continents. (bottom) Time series of cumulative
count of reservoirs in ReaLSAT-R-2.0 across different con-
tinents.

While GRanD database only provides static information about
the extent of reservoirs, ReaLSAT-R also provides surface area at
monthly scale from March 1984 to October 2015. Figure 7 shows
the aggregate surface area variation of reservoirs in ReaLSAT-R-2.0.
Due to the high prevalence of missing data in GSW dataset before
2000, the surface area at different time steps during this period can
be much lower than the actual area. Hence, the dynamics before
1999 are shown in light grey color to signify less data availability.
To provide a baseline of reservoir storage from reservoirs created
prior to 1984, we processed a subset of 3274 reservoirs that were
reported in GRanD and were created before 1984. At global scale,
we can see that surface area in reservoirs continued to increase
after 2000 as more reservoirs were constructed and approximately
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Figure 7: Aggregate surface area dynamics of reservoirs glob-
ally. The black line represents aggregate surface area of a
subset of reservoirs (3274) reported inGRanD thatwere built
before 1984 with size between 0.1 and 100 sq. kms. The red
line represents the aggregate surface area of 3274 old reser-
voirs and additional 15473 reservoirs created after 1984 that
are part of ReaLSAT-R-2.0.

15,000 sq. kms. of surface area has been added. Furthermore, there
has been a reduction in surface area after 2012 until the end of the
study period.

Figure 8: Aggregate surface area dynamics of reservoirs
across different continents. The black line represents aggre-
gate surface area of a subset of reservoirs reported inGRanD
that were built before 1984 with size between 0.1 and 100
sq. kms. The red line represents the aggregate surface area
of the old reservoirs and additional reservoirs created after
1984 that are part of ReaLSAT-R-2.0.

Figure 9: Aggregate surface area dynamics of reservoirs
across different continents. The black line represents aggre-
gate surface area of a subset of reservoirs reported inGRanD
that were built before 1984 with size between 0.1 and 100
sq. kms. The red line represents the aggregate surface area
of the old reservoirs and additional reservoirs created after
1984 that are part of ReaLSAT-R-2.0.

Figure 8 and Figure 9 show the aggregate surface area dynam-
ics for each continent separately. Different continents show very
different variations in surface area over the study period. Asia has
the most number of dams and also the largest aggregate surface
area. Even though South America has a greater number of dams,
reservoirs in North America have more total surface area. All con-
tinents show strong seasonality in area, and all continents other
than Europe show the decreasing trend from 2011-2015.

5 DATA AVAILABILITY
ReaLSAT-R provides the location, reference shape, and monthly
surface extent maps (which are used to create monthly surface area
time series) for each reservoir. Location and time series information
of these reservoirs is available at

http://umnlcc.cs.umn.edu/realsat/reservoirs/. This online inter-
face provides locations and reference shapes of all the reservoirs
in ReaLSAT-R-2.0. For each reservoir, its surface area time series
can be visualized by clicking on the point on the map. The viewer
also makes it easy to see the time lapse view of the reservoir, which
allows instant visual verification of the year of reservoir construc-
tion. The viewer also provides the surface area time series of 3274

http://umnlcc.cs.umn.edu/realsat/reservoirs/
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reservoirs reported in GRanD that were built before 1984 with size
between 0.1 and 100 sq. kms.
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