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ABSTRACT

Predicting changes in sea ice cover is critical for shipping, ecosystem monitoring,
and climate modeling. Current sea ice models, however, predict more ice than is
observed in the Arctic, and less in the Antarctic. Improving the fit of these physics-
based models to observations is challenging because the models are expensive to
run, and therefore expensive to optimise. Here, we construct a machine learning
surrogate that emulates the effect of changing model physics on forecasts of sea
ice area from the Los Alamos Sea Ice Model (CICE). We use the surrogate model
to investigate the sensitivity of CICE to changes in the parameters governing: ice’s
ridging and albedo, snow’s albedo, aging, and thermal conductivity, the effect of
meltwater on albedo, and the effect of ponds on albedo. We find that the CICE’s
sensitivity to these model parameters differs between hemispheres. We propose
that future sea ice modelers separate the snow conductivity and snow grain size
distributions on a seasonal and inter-hemispheric basis, and we recommend opti-
mal values of these parameters. This will make it possible to make models that
fit observations of both Arctic and Antarctic sea ice more closely. These results
demonstrate that important aspects of the behaviour of a leading sea ice model can
be captured by a relatively simple support vector regression surrogate model, and
that this surrogate dramatically increases the ease of tuning the full simulation.

1 MOTIVATION

Understanding future sea ice extents is critical for naval and shipping strategies, conserving polar
ecosystems, and modelling Earth’s energy balance and climate. Current models of sea ice, however,
consistently predict more extensive Arctic sea ice than is observed (Stroeve et al., [2007; [Perovich
et al.| [2019)), and less extensive Antarctic sea ice (Eisenman et al., [2011}; |Stroeve & Meier, [2018)).
This misfit may be caused by missing or mis-calibrated model physics.

Sea ice models are designed to capture the physical processes that shape snow and ice on 10—
30 km length scales, with smaller-scale processes represented through spatially averaged parameters
(Hunke et al.l 2017). The values of these parameters are tuned to observational data (Kim et al.,
2000)), but the tuning process is challenging, as each run of a global sea ice model can take days to
weeks. Here, we develop a machine learning surrogate of the leading sea ice model, CICE (Hunke
et al., |2017), use the surrogate model to efficiently evaluate the model’s response to changing pa-
rameters, demonstrate that the Arctic and Antarctic must be tuned separately, and provide recom-
mendations for reducing the current model-data misfit.

*Use footnote for providing further information about author (webpage, alternative address)—not for ac-
knowledging funding agencies. Funding acknowledgements go at the end of the paper.
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Table 1: Parameters varied in CICE perturbed parameter ensemble.

Parameter Range Default
Snow thermal conductivity ksno 0.10-0.35 0.30
Snow aging albedo parameter r_snw -1.9-1.9 1.5
Albedo adjustment from ice on snow r_ice -1.9-19 0.0
Albedo adjustment from ponds on snow r_pnd -1.9-19 0.0
Snow melt maximum radius rsnw_melt_in 500-2000 1500
Melting onset temperature, °C' dT_mlt_in 0.10-1.80 1.50
e-folding scale of ice ridges mu_rdg 3.0-5.0 4

2 METHODS

Our model is designed to enable accelerated analysis and tuning of the Los Alamos Sea Ice Model,
CICE. This is a global sea ice model used for operational ice forecasts, and its thermodynamic core
is used in many sea ice and climate models worldwide. Thus, improving the accuracy of CICE is an
effective route towards improving many widely-used sea ice forecasts. Although some authors have
begun to use machine learning to predict the properties of current sea ice (Lee et al.,|2016) machine
learning is not yet integrated into operational forecasts.

Long-term sea ice trends are well-predicted by physics-based models. The cost of these models
is high enough to make tuning inconvenient, but not so high as to warrant replacing the models
entirely with ML systems. Therefore, we focus on making improvements to a widely-used model,
rather than beginning from the ground up with a pure machine learning pipeline like |Chi & Kim
(2017). This approach allows us to leverage the speed of an ML emulator in the context where it is
most effective, while retaining the predictive power of the physics-based model, and working within
existing ice forecast infrastructure.

We sought a surrogate model that could capture the effect of selected model physics (§2.1) on CICE
ice cover forecasts in realistic past atmospheric conditions (§2.2), with the goal of identifying strate-
gies that simultaneously (1) decrease the model’s prediction of Arctic ice cover, (2) increase the
prediction of Antarctic ice cover, and (3) improve the realism of the model physics.

2.1 SELECTION OF TARGET PARAMETERS

We selected seven CICE parameters that represent ice and snow processes with strong influences
on total ice growth and area. These are listed in Table[I] along with their default values in CICE
4.0. The functions of these parameters are described fully in[Hunke & Jeffery|(2015). The parameter
selection was guided by sensitivity studies of CICE (Urrego-Blanco et al., 2016; |Blazey et al.,|2013)),
which brought attention to the high degrees of uncertainty caused by parameterizations of snow and
ice albedo (reflectivity), snow thermal conductivity, and snow aging.

2.2 DATA GENERATION

From these parameters, we generated a perturbed parameter ensemble of 72 CICE simulations.
Parameter combinations were selected using a Latin hypercube distribution, produced by the LLNL
Uncertainty Quantification Pipeline (Brandon et al., 2011} [Tannahill et al.l 2011 within the ranges
specified in Table [T}

To control the cost of generating this training data, we ran the ensemble with a repeated year 2000
atmospheric and ocean forcing. This is less realistic than a fully-coupled atmosphere that responds
to changes in the sea ice, but tens of times faster. The atmosphere was modelled by the Community
Atmosphere Model (CAMA4, grid £19); the ocean as a slab ocean; the sea ice model used a displaced
pole grid (gx1v6); and the land surfaces using the Community Land Model (Oleson et al., 2010).
The simulations ran for 40 years, the first 30 of which were used to spin up the model. To average
out the internal variability of the climate, we averaged the last 10 years of the runs together.
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2.3 SURROGATE MODEL DESIGN

The surrogate model predicts ice area and extent as a function of seven CICE model parameters
(r_snw, r_pnd, r_ice, dt_melt_in, rsnw_melt_in, ksno and mu_rdg) and a specific
query (ice area or extent, in either the northern or southern hemisphere, in a specific month). The
surrogate model is a support vector regression (Smola & Scholkopf] 2004), implemented in Python
using scikit-learn (Pedregosa et al., 2011).

2.4 TESTING AND VALIDATION

The model was trained and tested on 3360 data points (each representing ice area or extent, in a given
month, in a given hemisphere, for one of the 72 members of the perturbed parameter ensemble). We
split test and training data randomly at a ratio of 3:7. The model is not particularly sensitive to the
test/training data split: a fifteen-fold cross-validation with random splits returned R? goodness of fit
scorgs varying between 0.952-0.968. The model used in the final study (Fig. |l has a typical value
of R*=0.963.
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Figure 1: Surrogate model tuning and validation. Left: Fit between tuned surrogate model output
and CICE output. Right: Variation in surrogate model fit as a function of hyperparameters C' and ~y
for fixed v = 0.45. Lighter colors represent better fits.

Our SVR model’s behavior is governed by a set of hyperparameters: C, -, and v. We tuned the
model by searching this hyperparameter space for the best fit (Fig. [[b). We settled on C' = 318,
~ = 0.868, and v = 0.349 to balance surrogate model speed (which decreases with C') and accuracy,
and used these values for the remainder of the study.

2.5 BAYESIAN CALCULATION OF MODEL-DATA FIT

We compare the CICE model results to observed data from the NSIDC sea ice index (Fetterer et al.}
2017). Both modelled and observed data consist of monthly averages of ice area and extent in 2000.
The difference between our model and the observations is its misfit. Misfit approaches zero as the
model—data fit becomes perfect (or, as the likelihood that the observed data was produced by that
model becomes high), is negative if the model predicts less ice than was observed, and is positive if
the model predicts more ice than was observed. The misfit is given by

misfit(0) = (Mp) (5(5) - g) (cov?) (f(ef) - g) (1)

where § is a set of parameters, ¥/ is observational data, Z is model data, cov—! is the inverse covari-
ance matrix for the observational data, and M, is a normalization constant such that the misfit for
the default parameter settings (Table [I)) has magnitude 1.

The magnitude of the misfit is inversely related to the posterior probability, p(§|g), that known ob-
servations ¥ could be produced by a model with parameters g, assuming a uniform prior probability
for those parameters. Thus, the set of parameters that minimizes the absolute value of the misfit has
the highest likelihood of reproducing the observational data.
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3 RESULTS

The surrogate model is dramatically faster than CICE: each data point for ice area and extent is
generated in ~5 ms, versus ~96 CPU hours for each of the model runs described above — about
7 x 107 times faster. This made it possible to explore the model’s behavior through a Monte-Carlo
study of 600,000 parameter combinations. The resulting model—data misfits are shown for selected
parameters in Fig.[2]
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Figure 2: Likelihood that different sea ice model (CICE) parameterizations would have reproduced
observed ice area and extent in year 2000. Left: probability of producing Arctic observations.
Right: probability of producing Antarctic observations. Colored plots are bivariate distributions,
white background plots are univariate distributions with trend lines. Blue indicates that the model
produces less ice than is observed whereas red indicates that the model produces excess ice; white
indicates good agreement.

These results reveal that Arctic and Antarctic sea ice respond differently to changes in model pa-
rameters. Specifically, the parameter range we explored contains many good fits to the Arctic data
(white dots in Fig. |Z| left), but most of those parameter combinations produce far too little ice (blue)
in the Antarctic (Fig. 2] right). Moreover, the two hemispheres have opposite sensitivities to some
parameters: increasing r_snw or ksno strongly increases the ice cover in the Antarctic, but not in
the Arctic.

4 IMPLICATIONS FOR SEA ICE MODEL DESIGN

We find that the effects of sea ice parameters on predicted ice cover differ between the Arctic and
Antarctic. We recommend that sea ice model developers treat parameters such as ksno and r_snw
not as global parameters, but as dynamic properties that may change in space or time. Specifically,
as a simple, high-level fix, we recommend that developers use a lower value of the thermal con-
ductivity of snow, ksno, in the Antarctic than the Arctic, and a higher value of the snow aging
parameter r_snw. Implementing this change could quickly create models that better fit observa-
tions of Antarctic sea ice, and would add physical realism: both the thermal conductivity and the
effect of aging on snow differ between the hemispheres (Sturm et al.| |2002; [Massom et al., 2001).

In future work, we intend to validate this recommendation by implementing it within CICE, and
exploring the effect of improved sea ice model parameters on the global energy balance. We have
also limited this discussion to variations of the largest possible scale. In future work, we intend to
explore the effect of these model parameters on regional and seasonal sea ice variability, as well as
the inter-hemisphere variability explored here. Field studies have shown that the physics of sea ice
is variable on many scales, ranging from regional differences in snowfall and wind speed (Holland
& Kwokl [2012), to meter-scale variability in the form of ice leads or snow dunes (Popovi¢ et al.,
2018} [Kochanski et al.|, [2018)).
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This study shows that the behaviours of the leading sea ice model CICE can be captured by a rel-
atively simple support vector regression surrogate model and that this surrogate dramatically in-
creases the ease of exploring the behaviours of the full simulation. This facilitates better decisions
about the structure of the physics-based model.
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