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ABSTRACT

The large spatial/frequency scale of hyperspectral and airborne magnetic and grav-
itational data causes memory issues when using convolutional neural networks for
(sub-) surface characterization. Recently developed fully reversible networks can
mostly avoid memory limitations by virtue of having a low and fixed memory
requirement for storing network states, as opposed to the typical linear memory
growth with depth. Fully reversible networks enable the training of deep neu-
ral networks that take in entire data volumes, and create semantic segmentations
in one go. This approach avoids the need to work in small patches or map a data
patch to the class of just the central pixel. The cross-entropy loss function requires
small modifications to work in conjunction with a fully reversible network and
learn from sparsely sampled labels without ever seeing fully labeled ground truth.
We show examples from land-use change detection from hyperspectral time-lapse
data, and regional aquifer mapping from airborne geophysical and geological data.

1 INTRODUCTION

Remote sensing datasets collected by satellites and aircraft are relatively convenient to work with be-
cause they cover large areas, we can easily cut out rectangular patches, and connect well with com-
puter vision techniques including convolutional neural networks (CNNs). However, many CNNs
assume there are hundreds or more images with often just 3-channel input. Most benchmarks come
with fully annotated/segmented/labeled images. The reality in remote sensing is different: large
images and hundreds of hyperspectral frequencies as input. While there may be an abundance of
hyperspectral data itself, this does not hold for labels. Many land-use classification applications as-
sume some sparse ground truth and aim to interpolate/extrapolate using hyperspectral data, see, e.g.,
(Lee & Kwon, 2016; He et al., 2017; Xue, 2020; Li et al., 2017; Xu et al., 2020). The observations
above about hyperspectral data and labels also hold for shallow sub-surface remote sensing based
on gravitational, magnetic, topographical, and geological data.

In this work, we discuss the similarities and the subtle differences between multi-modality sensing
for sub-surface applications, and hyperspectral sensing for surface characterization. Both types of
remote sensing often come with large-scale inputs in terms of spatial size and number of frequencies
and modalities. This causes memory issues with networks that were developed for much smaller
images with RGB inputs. A second challenge arises when there is only sparse ground truth available
for training. Many works on hyperspectral land-use classification approach the problem by training
networks to classify the central pixel of a small patch of data (Makantasis et al., 2015; He et al.,
2017; Li & Shang, 2019; Li et al., 2017). This approach allows sparse sampling of the labels and
reduces the size of the input to mitigate memory limitations on graphical processing units (GPUs).
However, it prevents the network from having access to the larger (spatial) structures present in data.

Our primary contributions are threefold:

• This is the first work, to the best of our knowledge, where fully reversible neural networks
for semantic segmentation (Lensink et al., 2019; Peters et al., 2019c) enable learning from
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remote sensing data on a much larger scale than before while also working with arbitrar-
ily deep networks. These benefits result from the fact that fully reversible networks have
memory requirements that are independent of network depth and number of pooling layers.
• We make small modifications to the standard semantic segmentation problem setup and

cross-entropy loss function so that fully reversible networks can learn from sparsely sam-
pled ground truth.
• We present examples that show there are subtle differences between learning from hy-

perspectral data, and multimodality data acquired by aircraft, including gravitational and
magnetic data. These small differences do not prevent us to use the developed tools to solve
both problems in almost the same way.

After reviewing fully reversible convolutional neural networks, we show how to train both on hy-
perspectral and multi-modality datasets with sparse spatial label sampling. This discussion includes
the slight differences between the two scenarios considered. Examples include land-use change
detection from time-lapse hyperspectral data and sub-surface aquifer mapping.

2 FULLY REVERSIBLE NEURAL NETWORKS FOR LARGE SCALE REMOTE
SENSING

Most neural networks for classification and segmentation from remote sensing data use convolu-
tional kernels because of their performance on vision tasks and relatively low parameter count per
network layer. The literature contains little discussion about the computation of the gradients of
the loss functions. This is because the overwhelming majority relies on reverse-mode automatic
differentiation. This type of gradient computation requires access to the network states (activations)
Yj at layer j during the backpropagation phase. Standard implementations keep all network states
in memory, causing the memory footprint to grow linearly with network depth. Workarounds often
rely on relatively shallow networks (≈≤ 9 layers) or a network design that maps a small patch or
data sub-volume into the class of the central pixel/voxel.

Because fully reversible networks require memory for the states of just three layers, there is no longer
a need to trade-off depth for input size. The memory savings by using reversible architectures allow
us to allocate all available memory towards larger data input volumes, which enables the network to
learn from large-scale structures.

Various reversible networks were proposed for image classification (Dinh et al., 2016; Chang et al.,
2018; Gomez et al., 2017). We refer to such networks as block-reversible because they are re-
versible in between pooling/coarsening operations and require storing additional network states as
checkpoints before each pooling layer. Fully reversible networks that contain reversible or invertible
coarsening operations were proposed for image classification (Jacobsen et al., 2018; van de Leem-
put et al., 2018) and image/video segmentation (Lensink et al., 2019; Peters et al., 2019c). The
latter uses the orthogonal Haar wavelet transform W to coarsen the image and increase the number
of channels. The transpose achieves the reverse of these operations, i.e., the action of the linear
operator W on a tensor Y creates the mappings

WY : Rn1×n2×n3×nchan → Rn1/2×n2/2×n3/2×8nchan , (2.1)

W−1Y : Rn1×n2×n3×nchan → R2n1×2n2×2n3×nchan/8. (2.2)

Because of the invertibility of any orthogonal transform, applying W and W> incurs no loss of
information.

A conservative leapfrog discretization of non-linear Telegraph equation with time-step h is the basis
for the reversible architecture of (Chang et al., 2018). Combined with the orthogonal wavelet trans-
form, W, for changing resolution and the number of channels (Lensink et al., 2019), the network
recursion reads

Y1 = X, Y2 = X

Yj = 2Wj−1Yj−1 −Wj−2Yj−2 − h2K(θj)
>f(K(θj)Wj−1Yj−1), j = 3, · · · , n. (2.3)

The first to states are the initial conditions, which we set equal to the input data X ∈
Rn1×n2×n2×n3×nchan . Note that we set Wj as the identity if we do not want to change resolu-
tion at layer j. The ‘time-step’ h affects the stability of the forward propagation Haber & Ruthotto
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Table 1: Memory requirements for the states Yj for fully reversible and non-reversible equivalent
networks based on the networks in Table 2.

Memory Fully reversible network Non-reversible

Rate 3n1n2n3nchan nlayersn1n2n3nchan
Hyperspectral example 798 MB 5057 MB
Aquifer mapping example 1268 MB 6763 MB

(2017). The linear operator K(θj) is a representation of the convolutions with kernels θj . In this
work, we select the ReLU as the pointwise non-linear activation function f .

Reversibility of the above relation is the key property. By isolating one of the states in equation 2.3
and shifting indices, we obtain an expression for the current state in terms of future states:

Yj = W−1
j

[
2Wj+1Yj+1 − h2K(θj+2)>f(K(θj+2)Wj+1Yj+1)−Yj+2

]
, j = n− 2, · · · , 3.

(2.4)
This equation does not require inverting the activation function f . Instead, only the inversion of
the orthogonal wavelet transform is required, which is known in closed form. When computing the
gradient of the loss function using backpropagation, we recompute the states Yj while going back
through the network. The recomputation avoids the storage of all Yj and leads to a fixed memory
requirement for the states of three layers, see Table 1 for an overview.

3 SPATIAL SEMANTIC SEGMENTATIONS FROM 3D AND 4D DATA USING
FULLY REVERSIBLE NETWORKS

The goal is to create a spatial map from 3D/4D hyperspectral or other remote sensing data. Although
relatively standard, we cannot straightforwardly use the cross-entropy loss function because fully
reversible networks output a tensor of the same size as the input by construction. However, we are
just interested in a spatial map of the earth in terms of a semantic segmentation of land-use or aquifer
presence.

Non-reversible networks can output a tensor that has a size different from the input by pool-
ing/coarsening in one direction more than another, or by reducing the number of channels. Both
of these approaches can ‘compress’ a 3D or 4D tensor into a 2D matrix.

Fully reversible networks require a different approach. We propose to embed the known ground-
truth labels in the label tensor C ∈ Rn1×n2×n3×nchan at slice p as C:,:,p,1:nclass . The number of
different classes, nclass, has to be smaller or equal to nchan. All other entries in the label tensor are
unknown and not used in the loss and do not contribute to the gradient computation. The resulting
multi-class cross entropy function with softmax reads

l(X,θ,C) = −
∑

(i,j)∈Ω

nclass∑
k=1

Ci,j,p,k log

(
exp(g(θ,X)i,j,p,k)∑nclass
k=1 exp(g(θ,X)i,j,p,k)

)
, (3.5)

where the spatial locations indices of known labels are collected in the set Ω. The nonlinear function
g(θ,X) denotes a neural network for which the inputs are parameters θ and data X. The loss
function is thus a sum over sparse spatial locations in a single slice slice (p) and over a part of
the channels. Computationally, the loss function requires a full forward pass trough the network,
followed by sampling at the indices of interest that correspond to known labels locations. All entries
where the labels are not known or that are not part of our problem formulation do not contribute to the
subsequent gradient computation. See Peters et al. (2019a;b) for more information and applications
of partial loss functions.

This section showed that two small modifications to a standard cross-entropy loss enable us to a)
apply fully reversible networks to problems where we want to reduce multi-dimensional data types
into a 2D spatial map by embedding map-type labels in a 3D/4D tensor; b) also learn a mapping
from data to a full segmentation while never having access to fully annotated examples.
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Table 2: Network design for the fully reversible networks. The time-lapse hyperspectral example
uses 3× 3× 3 convolutional kernels. The the number of input channels is increased up from two to
384 by replicating the data three times and applying two subsequent 3D Haar transforms.

Hyperspectral Aquifer mapping

Layer Channels Feature size Layer Channels Feature size

1-5 384 76× 60× 38 3-4 56 1296× 1456
6-11 48 152× 120× 76 5-9 224 648× 728
12-19 6 304× 240× 152 10-18 56 1296× 1456

4 TIME-LAPSE HYPERSPECTRAL LAND-USE CHANGE DETECTION

The data, X, has two spatial coordinates n1 and n2, and the third dimension corresponds to fre-
quency. There is one channel per time of data collection, two in this example. Figure 1 displays
these data sets (Hasanlou & Seydi, 2018). We follow common practice in hyperspectral imaging
literature, where part of the segmentation is assumed known. The lines in Figure 2 show where
there are training and validation labels. The training labels amount for about 9% of the surface.

(a) (b)

Figure 1: The hyperspectral data collected at two different times.

(a) (b)

Figure 2: Plan view of the label locations for training and validation for the hyperspectral example.

Table 2 contains network details. For training, we use stochastic gradient descent with momentum
and a decaying learning rate for 320 iterations. The loss and gradient computation use 1/5 of the
known labels shown in Figure 2, randomly selected per iteration. We also apply random permuta-
tions and flips to the two spatial data dimensions. Figure 3 shows true land-use change, prediction,
and errors. Aside from some boundary artifacts, there are just two fields classified incorrectly.
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Figure 3: True land-use change, prediction, and the error.

5 REGIONAL-SCALE AQUIFER MAPPING

The task is the delineation of large aquifers in Arizona, USA, see Figure 6. The classes are: basin
and range aquifers, Colorado Plateau aquifer, and no aquifer (Robson & Banta, 1995). The survey
area is almost the entire state. Aircraft-based sensors collected magnetic and two types of gravity
measurements, see Figure 4. We also use the topography. Besides these remotely acquired data,
we supplement two types of geological maps: one map in terms of rock age, and one in terms of
rock types. The advantage of using geological maps is that they incorporate expert knowledge into
our data. Geologists construct these maps by synthesizing their geological knowledge with ground
truth observations, hyperspectral data, and various airborne and land-based geophysical surveys. A
disadvantage of using geological maps is that their resolution is unknown because they are partly
composed of other geological maps created on various scales. The geological maps in Figure 4 are
not invariant under the permutation of the class numbers. This would influence what the network
will ‘see’. Therefore, we create one map per class that shows where a particular rock class is present
or not, resulting in 52 separate geological maps derived from the two original maps.

Figure 4: The data inputs for the aquifer mapping example. Each type is placed in a separate channel
of the input. We do not use the two geological maps as images. Instead, each class is converted to a
map with zero/one values, resulting in 52 separate geological maps.
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Figure 5: Locations of the training and validation labels for the aquifer mapping example.

Just like in the hyperspectral example, we assume partial ground truth as if an expert annotated
the aquifers along a few transects, see Figure 5. Training is similar to the previous example:
SGD+momentum with a decaying learning rate for 140 iterations. Each iteration uses about 1/5
of the known labels to compute an approximation of the loss and the gradient. We also augment
the data with random flips and permutations. The network details can be found in Table 2. Figure
6 displays the results and errors. Most of the error concentrates on a few patches, as well as minor
errors along some of the geological rock type boundaries.

Figure 6: True aquifer map, prediction, and errors in blue, correct in yellow

6 CONCLUSIONS

We presented computational methods for designing and training convolutional neural networks for
characterizing both the surface and sub-surface from remote sensing data. Hyperspectral data, air-
borne geophysical data, as well as geological maps, lead to spatially large images with dozens to
hundreds of frequencies or channels. Under tight memory constraints, most neural network ap-
proaches are limited to shallow networks and approaches that map from a small patch/subvolume to
the class of the central pixel. We showed that the fundamentally lower memory requirements of fully
reversible networks enable the semantic segmentation of large 3D and 4D datasets in one go, without
resorting to small patches. Minor modifications of standard cross-entropy losses suffice to train in a
randomized fashion on a single example with partial ground truth, and without ever having access
to fully annotated examples. Because fully reversible neural networks were recently developed, this
is the first effort to apply them to remote sensing applications. The presented computational tools
enable learning on a larger scale and alleviate memory limitations associated with deep networks.
The results for land-use change detection and aquifer mapping are encouraging. To evaluate the full
benefits, we need to research how to annotate or sample ground truth for label generation from the
deep network point of view.
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