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ABSTRACT

We apply deep learning to high-impact weather prediction, specifically to the task
of predicting tornadoes in the next hour based on current NEXRAD weather radar
observations. In this paper, we analyze the results using multiple model inter-
pretation approaches and demonstrate that model interpretation, especially when
physically constrained and verified through statistical analysis, can be used to gain
physical insights for atmospheric science.

1 INTRODUCTION AND MOTIVATION

Traditional machine learning (ML) techniques have a long history in meteorology and have been
demonstrated to improve the prediction of multiple weather phenomena (e.g., Haupt et al., 2008;
Trafalis et al., 2003; Williams et al., 2008; Gagne et al., 2009; Cintineo et al., 2014; Clark et al.,
2015; McGovern et al., 2017). Many of these methods were chosen based on their intepretability,
such as decision trees, which can be easily understood by domain scientists. Recently, deep learning
(DL) has also proven to be a versatile and powerful tool for atmospheric science through improved
prediction and understanding of convective hazards (McGovern et al., 2019; Gagne et al., 2019),
estimation of sea-ice concentration (Wang et al., 2016), predicting tropical-cyclone intensity (Wim-
mers et al., 2019; Gagne et al., 2020), detecting extreme-weather patterns in model output (Racah
et al., 2017; Kurth et al., 2018; Lagerquist et al., 2019a), and replacing parameterizations in physical
models (Rasp et al., 2018; Brenowitz & Bretherton, 2018; 2019). However, deep learning is gen-
erally viewed as a “black box,” especially by domain scientists. With an ultimate goal in mind of
truly incorporating machine learning into a cycle of knowledge discovery with Earth scientists, we
study the feasibility of using interpretation techniques for DL models to gain physical insights into
the task of predicting tornadoes.

Interpretation techniques for DL are relatively recent and are just beginning to gain popularity in at-
mospheric science (e.g., Herman & Schumacher, 2018; McGovern et al., 2019; Toms et al., 2019b).
In this paper, we focus specifically on saliency maps (Simonyan et al., 2014), backward optimization
(Olah et al., 2017; 2018), and visualization of the most activated examples (Zeiler & Fergus, 2014).
To help physically verify the potential scientific insights identified by the saliency maps, we perform
“sanity checks” on the maps as proposed by Adebayo et al. (2018). These checks enable the domain
scientist to verify that the knowledge identified by the deep learning methods are statistically signif-
icant. We also introduce a constraint function to ensure that backward optimization results remain
physically plausible.
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Our focus in this paper is on the task of tornado prediction. We train a Convolutional Neural Network
(CNN, LeCun et al., 2015) to predict the probability that a storm will produce a tornado in the next
hour given data similar to those used by meteorologists in real-time. We then appply saliency maps
and backward optimization to understand the physical relationships learned by the CNN. This work
is similar to the tornado work presented in (McGovern et al., 2019) but with several key differences.
First, the model used here is trained with 3-D radar data, rather than 2-D. Second, we present a
constraint loss function for backward optimization that encourages physical realism of the synthetic
storms. Third, we use the sanity checks on the saliency maps to ensure that interpretation results
are statistically significant. Finally, we visualize the examples that activate the most discriminative
neurons with minimal cross-correlation to sample the variety of storm modes encoded by the CNN.

2 TORNADO PREDICTION

Due to space, we briefly describe the data and machine learning setup for tornado prediction. Com-
plete details are given in Lagerquist et al. (2019b). Our goal was to use data that was as similar as
possible to the data available to forecasters in real-time. Given the rarity of actual tornadoes, we train
retrospectively. We use two datasets as input to the deep learning model: Gridded NEXRAD WSR-
88D (GridRad) (Homeyer & Bowman, 2017) and the Rapid Refresh model (RAP) (Benjamin et al.,
2016). Labels come from the National Weather Service (NWS) tornado reports database (NWS,
2016). GridRad contains merged radar data from all Weather Surveillance Radar 1988 Doppler
(WSR-88D) (Crum & Alberty, 1993) sites in the continental United States (CONUS). Each radar
scans a different part of the atmosphere, and where multiple radars scan the same point, they gen-
erally do so with differing resolution and errors. Merging data from all radars allows the data to
be represented on a common Cartesian grid, and the merging algorithm includes quality-control
measures that cannot be applied to single-radar data. This gives us a high-resolution 3D scan of the
atmospheric available every 5 minutes across the CONUS. The RAP is a physical weather model that
provides simulated environmental soundings with information on the wind and temperature from the
surface to the upper atmosphere. We use RAP-simulated soundings because observed soundings are
too sparse (CONUS has only 92 measurement sites, which launch soundings only once every 12
hours). The RAP produces consistent soundings on a grid across CONUS at a 1 hour interval.

To train the CNN, we use GridRad to create storm-centered radar images and the RAP to create
a proximity sounding, representing the environment in which the storm will evolve over the next
hour. Each input to the CNN (also called an “example”) is one thunderstorm at one time. Our
pre-processing methods (described in detail in Lagerquist et al. (2019b)) are used to identify and
track individual storm cells as well as to link storms with labels from the NWS. The input image
to the CNN uses 3D images from the GridRad radar data, encompassing each radar variable. The
image is a 48 km× 48 km × 12-km equidistant grid with 1.5-km horizontal spacing (which makes
input images 32 × 32 × 12 pixels), 1.0-km vertical spacing, and storm motion pointing to the right.
The grid is aligned with storm motion because tornadoes usually occur on the right-rear flank of
the storm, regardless of its direction of motion. The proximity sounding is from the nearest RAP
grid cell to point P , where P is the storm center extrapolated 30 minutes ahead (the median of the
0–1-hour prediction window) along the storm’s motion vector.

The CNN used in this work had three layers of convolution and pooling, followed by two dense
layers. The 3-D inputs are: radar reflectivity, which generally increases with storm strength and
precipitation rate; spectrum width, which generally increases with mean wind speed and turbulence;
vorticity, which is the rotational component of the wind; and divergence, which is the wind flux
away from a point. Each of these is given to the CNN as an image. The environmental sounding is
a 1-D input. The full architecture of the CNN is given in the Appendix in Figure 4.

The data is split into training, validation, and testing. Training data comes from the period 2012-
2015. Validation comes from 2016-2018 and testing is from 2011, which was a year with high
tornadic activity. Each period excludes the last week to ensure that temporal autocorrelation is
eliminated across datasets. One example for the CNN is one thunderstorm at one time step. The
training set contains 170 562 examples, 2.83% of which are tornadic; the validation set contains
85 056 examples (2.18% tornadic); and the testing set contains 158 781 examples (3.16% tornadic).
Given that the focus of this paper is on the interpretation, we show the objective performance analysis
in the Appendix in Figure 5. Area under the receiver-operating-characteristic curve (AUC; Metz,
1978) is ∼0.93, which surpasses the 0.9 threshold generally considered for excellent performance
(Luna-Herrera et al., 2003; Muller et al., 2005; Mehdi et al., 2011).
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3 MODEL INTERPRETATION METHODS

We briefly describe the three model interpretation methods that we used. We have applied additional
methods but do not have the space to describe them here. Instead, we focus on saliency maps,
backward optimization, and neuron visualizations and rankings.

3.1 SALIENCY MAPS

Saliency (Simonyan et al., 2014) is defined for each scalar predictor (i.e., each variable at each grid

point). The saliency of scalar predictor x is ∂a
∂x

∣∣∣∣
x=x0

, where a is the activation of a neuron in the

model and x0 is the value of x in a testing example. In this work we compute saliency for the
output neuron, whose activation is the predicted tornado probability. Saliency can be computed for
all scalar predictors, leading to a map that can be overlain with the input data to highlight predictors
to which the most model is most sensitive and the direction (positive or negative) of this sensitivity.

Adebayo et al. (2018) proposed three sanity checks to ensure that saliency maps truly depend on
relationships learned by the model, rather than artifacts caused by the model architecture or grid
dimensions, such as Buell patterns in principal-component analysis (Buell, 1979). The first check is
the edge-detector test, which compares the saliency maps produced by the trained model with maps
produced by an untrained edge-detector. The second is the model-parameter-randomization test,
which compares saliency maps from the trained model before and after randomizing the weights
in some layers. The third is the data-randomization test, which compares saliency maps from the
model trained with the true data to maps produced by a model trained on random labels. However,
we were unable to create a model that overfits random labels, so we present results only for the
first two checks. Each sanity check produces a set of dummy saliency maps (one for each testing
example), which we compare to the actual saliency maps. To assess statistical significance, we apply
a two-tailed Monte Carlo test (Dwass, 1957) to the composite difference (Appendix B).

3.2 BACKWARD OPTIMIZATION (BWO)
BWO (Erhan et al., 2009) creates a synthetic input that extremizes (minimizes or maximizes) the
activation of a particular neuron in the model. BWO is sometimes called activation maximization
(Erhan et al., 2009), feature optimization (Olah et al., 2017), or optimal input (Toms et al., 2019a).
The BWO procedure is basically training in reverse. During training, BWO is used to adjust weights
in a way that minimizes the loss function. During BWO, gradient descent is used to adjust predictor
values in a way that extremizes the neuron activation. As for saliency maps, we focus on the output
neuron, whose activation is predicted tornado probability.

At each iteration of gradient descent for BWO, the synthetic example is updated via the following
rule. X is the tensor of predictor values; J is the loss function; ∂J

∂X is a gradient tensor with the same
dimensions as X; and α is the learning rate, usually a positive number� 1. Both α and the number
of iterations are hyperparameters.

X← X− α ∂J
∂X

(1)

In the simplest framework, J = (p − p∗)2, where p is the CNN-generated class probability and p∗
is the desired probability (0.0 or 1.0). Thus, Equation 1 can be written as follows.

X← X− 2α(p− p∗) ∂p
∂X

(2)

Gradient descent requires a starting point or “initial seed”. Some options are all-zeros, random
noise, or an actual testing example. The advantage of all-zeros and random is that the initial seed
does not resemble a real example, so the synthetic example ultimately produced is more novel. The
disadvantage is that, because the initial seed is very unrealistic, the synthetic example can be very
unrealistic as well. Starting from an actual example encourages more realistic output. However,
this is not guaranteed, so we add constraints to the loss function (Equation 3) to encourage physical
realism of the synthetic example.

J = (p− p∗)2 + λ2‖X−X0‖2 + λminmax

∑
j

‖max(Xmin
j −Xj,0)‖2

+λminmax

∑
j

‖max(Xj −Xmax
j ,0)‖2

(3)
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The first term is the unconstrained loss function; the second term is the L2 penalty on the difference
between the original example X0 and synthetic example X; the third term is the penalty for violating
minimum-constraints; and the fourth term is the penalty for violating maximum-constraints. Xj is
a tensor with values of the jth variable only; Xmin

j is a tensor of the same shape, where every value
is the minimum allowed for the jth variable; Xmax

j is a tensor of the same shape, where every value
is the maximum allowed for the jth variable; and 0 is the tensor of the same shape, where every
value is zero. For instance, if the jth variable is fractional relative humidity (where 0 is 0% and 1 is
100%), Xmin

j = 0 and Xmax
j = 1. λ2 is the strength of the L2 penalty, and λminmax is the strength of

the min-max penalty, both hyperparameters. The constraints are given in Appendix B.

3.3 NEURON RANKING BY AREA UNDER THE ROC CURVE

Each neuron in a convolutional neural network is optimized to make the predicted classes more
separable from each other. Due to randomness in the stochastic gradient descent process, not all
neurons are equally good at separating different classes. However, we can rank the quality of a set
of given neurons by evaluating the discrimination ability of their output with the Area Under the
ROC Curve (AUC) metric. Although AUC is generally calculated for probabilistic predictions, the
approach can be applied to any continuous range of values that has binary labels associated with it.
For binary classification problems, AUC values well above 0.5 indicate that increasing the activation
values increases the probability of the positive class, but AUC values well below 0.5 indicate that
increasing the activation values decreases the probability of the positive class. After ranking the
neurons by AUC, we calculate the Pearson correlation matrix among all neuron activations. Since
there is strong correlation among some of the neurons, we sequentially select the top neurons in
terms of AUC that also have a maximum correlation with any previously selected neuron below a
threshold of 0.5. Since the storms are already rotated in the direction of storm motion, we composite
radar reflectivity of the top 30 examples to reveal the preferred storm mode for each neuron.

4 RESULTS

Figure 1 shows composite saliency maps for the 100 best hits, defined as the 100 positive examples
(storms that are tornadic in the next hour) with the highest predicted probabilities from the CNN
(average of 99.2%). The saliency map is computed independently for each example, and the re-
sults are composited via probability-matched means (PMM; Ebert, 2001), which preserves spatial
structure better than taking the mean for each scalar predictor independently. Figure 1a shows the
actual saliency map. Saliency is maximized on the right-rear flank of the storm, where the reflectiv-
ity core and mesocyclone intersect and a potential tornado would be expected (Klemp & Rotunno,
1983). Tornado probability increases with reflectivity, vorticity, and spectrum width at all heights.
Saliency for reflectivity and spectrum width is highest at 10 km above ground level (AGL), while
saliency for vorticity is highest at 2 km AGL. Thus, the model is particularly sensitive to low-level
rotation and storm depth. Figures 1b-c show dummy saliency maps, created by two of the sanity
checks discussed in Section 3.1. Stippling shows where differences between rescaled values (Ap-
pendix B) in the dummy and actual saliency maps are significant. According to the edge-detector
test (Figure 1b), 20% of values are significantly different, primarily at 2 km AGL. Above 2 km, the
shape of the saliency map (rescaled values) can be mostly replicated by an untrained edge-detection
filter, but raw values cannot (note the difference between color scales). According to the model-
parameter-randomization test (Figure 1c), 23% of values are significantly different, which suggests
that actual saliency maps truly depend on learned weights in the given layer. Results for other layers,
both convolutional and dense, are similar. In general, saliency maps for the GridRad model cannot
be trivially replicated, which suggests that they truly reflect physical relationships learned by the
model.

Figure 2 shows synthetic storms created by applying BWO to the best hits, with the goal of decreas-
ing tornado probability to 0.0. The results are composited via PMM. On average, the adjustments
made by BWO decrease tornado probability from 99.2% to 6.9%. In general, BWO decreases all
three radar variables in the core and mesocyclone, making the storms weaker, and increases all three
variables in the surrounding area, making the storms less discrete (isolated from surrounding con-
vection). The effect of physical constraints is most obvious in the synthetic soundings (Figure 2e-f).
Unconstrained BWO creates sharp discontinuities in both the dewpoint and temperature profiles that
are not realistic.
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Figure 1: Sanity checks on saliency maps for the 100 best hits (composited via PMM). Storm motion
points to the right. Heat maps show the radar fields (predictors), while line contours show saliency.
Solid contours indicate positive saliency (tornado probability increases with the underlying radar
value), while dashed contours indicate negative saliency (tornado probability decreases with the
underlying radar value). [a] Actual saliency map. [b] Saliency map produced by an untrained edge-
detector. [c] Saliency map produced after randomizing weights in the third convolutional layer. In
panels b-c, stippling shows where the actual and dummy saliency maps are significantly different at
the 95% confidence level.

Figure 2: Backward optimization for the 100 best hits (composited via PMM). Storm motion points
to the right. [a] Original radar image, before BWO. [b] Synthetic radar image, created by BWO with
constraints. [c] Same but for unconstrained BWO. [d-f] Same as a-c but for the proximity sounding,
plotted as a skew-T log-p diagram, a common tool for visualizing soundings. The thick solid black
line is air temperature; the thick dashed black line is dewpoint temperature; and vectors along the
right-hand side are wind barbs. The y-axis is pressure, which decreases with height, so these plots
show vertical profiles.

The composites of the storms that activate the most discriminative and minimally-correlated neurons
are shown in Fig. 3. The top neuron corresponds to a supercellular storm mode and the composite
of the 100 best hits from Fig. 1. The other top neurons highlight either other supercellular modes
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Figure 3: Composites of the top 30 storms that activate the top minimally-correlated neurons in the
last layer of the convolutional neural network along with the associated AUC for that neuron.

where the storm has more of an across-track extent or is in a more linear storm mode. The more
linear modes tend to have a lower AUC, which matches with the lower skill human forecasters have
in predicting tornadoes from these storm modes. The best non-tornadic neurons focus on storms
with weak radar reflectivity and small single-cell modes.

5 DISCUSSION AND FUTURE WORK

We have presented the results of applying multiple model interpretation models to the task of pre-
dicting tornadoes in a storm over the next hour. The model interpretation methods identify knowl-
edge that is consistent with current knowledge of tornadogenesis. We demonstrated that the sanity
checks for saliency maps can be used to verify the value of the knowledge. This can help to prevent
confirmation bias when examining model interpretation results.

We also demonstrated that adding physically based constraints to the loss function for BWO can im-
prove the physical realism of synthetic storms. While the constraints are not sufficient to fully solve
the need for physically based results, they are promising and we are continuing develop approaches
to physically constraint the models and the interpretation results.

We finally demonstrated that CNNs can encode a variety of storm modes in their internal neurons,
and that the discriminative skill of each neuron matches subjectively with the skill or lack thereof that
human forecasters have in predicting tornadoes from these modes. Further analysis with saliency
maps and other interpretation techniques will reveal the areas of interest to the neural network for
each storm mode along with differences in 3D structure that may not be apparent from the current
2D visualization.
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A APPENDIX: MACHINE LEARNING DETAILS

Figure 4: Architecture of the tornado-prediction CNN. The input is a 32 × 32 × 12 grid with four
variables. One example input at three of the twelve heights, is shown in panel a. The three convolu-
tion layers transform these variables into a successively increasing number of feature maps (lowest
height level shown in panels b-e). The pooling layers successively halve spatial resolution. The
sounding input is not shown but it follows the same architecture, with three convolution layers and
three pooling layers. Maps from the two feature-detectors are flattened, concatenated together, and
passed through two dense layers, terminating with one scalar output (next-hour tornado probability).

The architecture of the CNN used is shown in Figure 4. The activation function for all convolution
layers and the first dense layer is the leaky rectified linear unit (ReLU) (Maas et al., 2013) with a
slope, α = 0.2. The final dense layer uses the sigmoid activation function, which forces the output
to range from [0, 1], allowing it to be interpreted as a probability.

The CNN is trained with three types of regularization: L2 regularization (Hoerl & Kennard, 1970;
1988) in the convolution layers, dropout (Hinton et al., 2012) in the first dense layer, and data
augmentation (Section 5.2.5 of Chollet 2018) (Chollet, 2018). For the data augmentation, we apply
the following small perturbations to each radar image during training: horizontal translation by 3
grid cells to the north, northeast, east, southeast, south, southwest, west, and northwest; rotation
in the horizontal plane by -15◦, +15◦, -30◦, and +30◦; and five additions of Gaussian noise with a
standard deviation of 0.1. Inside the CNN, all predictors are normalized to z-scores (with a mean
of 0.0 and standard deviation of 1.0), so Gaussian noise has an equal impact on all predictors. The
perturbations are applied separately, turning each training example into 18 (the original example plus
17 perturbed ones). The specific perturbations were determined by a hyperparameter experiment,
as were the L2 strength (0.001), dropout rate (50%), and number of dense layers (two, as shown in
Figure 4). The objective of the hyperparameter experiment was to maximize AUC on the validation
data.

CNN objective performance on the testing data is shown in Figure 5. We measured performance
using AUC (∼0.93) and with a performance diagram (Roebber, 2009). AUC is measured from the
probability of detection (POD), which is the fraction of tornadic examples that are correctly forecast
and the probability of false detection (POFD), which is the fraction of non-tornadic examples that are
incorrectly forecast. Performance diagrams plot the success ratio, which is the fraction of tornadic
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Figure 5: Performance of the tornado prediction CNN on testing data. Dark lines show the mean, and
light shading shows the 95% confidence interval, determined by bootstrapping the testing examples
1000 times. Dashed grey lines in the performance diagram show frequency bias, which is the ratio
of forecast to actual tornadoes and should ideally be 1.0.

forecasts that are correct against POD. The ROC curve is insensitive to event frequency while the
performance diagram is highly sensitive to event frequency. For rare events such as tornadoes, it is
difficult to achieve a high probability of detection with low false-alarm ratio, so the curve tends to
be near the bottom-left. Nonetheless, the high AUC suggests that our model performs well enough
that it is worth querying via interpretation methods.

B APPENDIX: METHOD DETAILS

B.1 SALIENCY MAP STATISTICAL CHECKING

The two-tailed Monte Carlo test (Dwass, 1957) on composite differences is described below.

1. Rescale all saliency values to percentiles to ensure values between actual and dummy
saliency maps can be compared.

2. For each of 10 000 iterations:
(a) Randomly shuffle examples between the actual (A) and dummy sets (D), yielding A′

and D′. Both A′ and D′ contain a mix of actual and dummy saliency maps.
(b) Take the probability-matched mean (PMM; Ebert, 2001) for both A′ and D′. Record

the randomized composite difference (PMM from A′ minus PMM from D′) for each
predictor.

3. For each scalar predictor:
(a) Find the true composite difference (PMM over set A minus PMM over set D).
(b) Find the percentile of the true composite difference in the distribution of 20 000 ran-

domized composite differences.
(c) If the percentile is < 2.5 or > 97.5, the difference is significant at the 95% confidence

level.

Step 2a shuffles entire examples, rather than shuffling independently for each grid point or each
scalar predictor. This preserves spatial and cross-channel correlations in the data, which obviates
the need to explicitly control the false-discovery rate for multiple comparisons (Jensen & Cohen,
2000; Wilks, 2016).

B.2 BWO DETAILS

In this work we set λ2 = 1 and λminmax = 10, with the following constraints.

• Minimum reflectivity in radar image = 0 dBZ
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• Minimum spectrum width in radar image = 0 m s-1

• Minimum θv in sounding = 0 K
• Minimum relative humidity in sounding = 0%
• Minimum specific humidity in sounding = 0 g kg-1

• Maximum relative humidity in sounding = 100%
• Maximum specific humidity in sounding = 1000 g kg-1
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