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ABSTRACT

One of the fundamental driving phenomena for climate effects is fluid turbulence
in geophysical flows. Modeling these flows and explaining its associated spatio-
temporal phenomena are notoriously difficult tasks. Navier-Stokes (NS) equations
describe all the details of the fluid motions, but require accounting for unfeasibly
many degrees of freedom in the regime of developed turbulence. Model reduc-
tion and surrogate modeling of turbulence is a general methodology aiming to
circumvent this curse of dimensionality. Originally driven by phenomenological
considerations, multiple attempts to model-reduce NS equations got a new boost
recently with Deep Learning (DL), trained on the ground truth data, e.g. extracted
from high-fidelity Direct Numerical Simulations (DNS). However, early attempts
of building NNs to model turbulence has also revealed its lack of interpretability
as the most significant shortcoming. In this paper we address the key challenge
of devising reduced but, at least partially, interpretable model. We take advantage
of the balance between strong mathematical foundations and the physical inter-
pretability of wavelet theory to build a spatio-temporally reduced dynamical map
which fuses wavelet based spatial decomposition with spatio-temporal modeling
based on Convolutional Long Short Term Memory (C-LSTM) architecture. It is
shown that the wavelet-based NN makes progress in scaling to large flows, by
reducing computational costs and GPU memory requirements.

1 CHALLENGE OF LEARNING SPATIO-TEMPORAL PHYSICS

Multitude of research problems in earth and climate sciences are exceptionally complex to study
and model with existing analysis tools because of their high-dimensionality, with thousands-to-
millions degrees of freedom exhibiting spatio-temporal dynamics, non-linearity and chaos. One of
the most pertinent problems combining all these factors is fluid turbulence which occurs in geo-
physical flows and influences much of near and long term climate effects. In an era where vast
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Figure 1: Wavelet-3D-C-LSTM: A schematic

quantities of turbulence data are generated for studying these applications, building practically us-
able, physics-driven reduced order surrogate models becomes extremely challenging and important.
Recent surge in devising NN-based reduced models of turbulence Hennigh (2017); Wu et al. (2019);
King et al. (2018) including significant efforts from the computer graphics community Wiewel et al.
(2019); Werhahn et al. (2019); Xie et al. (2018); Um et al. (2018) for flow visualization by applying
powerful, but application-agnostic Deep Learning (DL) techniques, such as Generative Adversarial
Networks Goodfellow et al. (2014) and Convolutional LSTM (C-LSTM) Networks Xingjian et al.
(2015) has provided valuable tools boosting research in this important field of physics. However,
majority of approaches used in this emerging field are limited to analysis based on two dimensional
spatial projections of the originally 3+1 dimension (three-dimensional space and another dimension
in time) spatio-temporal data-sets. Some of the state-of-the art spatio-temporal NN modeling archi-
tectures, like C-LSTM, have significant memory costs thus resulting in a limited utility to practical,
e.g. climate and geophysical, datasets. Our main focus in this paper is on making C-LSTM tractable
for large scientific spatio-temporal datasets like fully developed turbulence, outlined in Appendix A.

2 EXISTING STRATEGY: AUTOENCODER 3D CONVOLUTIONAL LSTM

An approach to building reduced modeling of massive 3D spatio-temporal turbulence datasets is
described in Mohan et al. (2019). The main spatio-temporal modeling block, 3D-C-LSTM, was
implemented in Mohan et al. (2019) through 3D extension of the 2D C-LSTM, originally proposed
in Xingjian et al. (2015). To reduce dimensionality, spatial compression and decompression steps
were implemented via autoencoders, sandwiched by 3D-C-LSTM layers. A sequence of 50 tempo-
ral snapshots, each of size 1283 with 3 velocity components, was used. This imposed a significant
training cost, and the solution relied on convolutional auto-encoders to compress/decompress data
before/after the 3D-C-LSTM block. The approach has helped to compress by factor of 125, down to
153 × 15 numbers. Knowledge of physics was utilized in Mohan et al. (2019) postfactum – only to
evaluate prediction quality. However, this generally successful autoencoder-based approach had two
important shortcomings. First, we do not have explicit control on the features to retain in the latent
space and therefore some important features may be lost. Second, autoencoders are computationally
expensive for even moderate in size datasets. This manuscript suggests to resolve these compli-
cations by replacing the autoencoder NNs with explicit and physics-based model reduction guided
by wavelets. Wavelets provide additional benefits of strong mathematical foundations through the
wavelet selection (e.g. resulting in numerical stability) and significant reduction of the underlying
computational cost.

3 PROPOSED SOLUTION: WAVELET-3D-C-LSTM

In this manuscript we propose a new NN scheme, coined Wavelet-CLSTM, to simultaneously ad-
dress the twin challenges of reducing the computational cost and injecting physics-based features
into the procedure. The key idea of our Wavelet-CLSTM scheme consists in decomposing the 3+1
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dimensional training data set with the wavelet transform, which results in a compact representation
though the wavelet coefficients. The approach is superior to the previously used (auto-encoder based
compression/decompression) methodology because it represents turbulence data in a compact, math-
ematically accurate, robust and flexible way. Moreover, we capitalize on the fact, well documented
in the literature Farge (1992); Meneveau (1991); Everson et al. (1990); Farge et al. (2001); Schneider
et al. (1997); Pulido et al. (2016); Li et al. (2018), that the wavelet coefficients capture multi-scale
physics embedded in the turbulence dataset in one of the most efficient compressed formats. For
example, a 3 level wavelet decomposition of a volumetric dataset (Appendix A) of size 1283 pro-
duces 512 coefficients of size 163. This reduction in dimensionality is critical for saving memory
and improving practical applicability of powerful, but expensive, architectures like C-LSTM. Ad-
ditionally, a full wavelet decomposition can be used to perfectly reconstruct the original dataset i.e
it is non-lossy if all coefficients are considered. However, for reduced order modeling of practical
datasets, we choose fewer coefficients to achieve maximal compression. This is an important choice
to be made prior to training called wavelet thresholding, where the coefficients with the highest L2
norm are chosen for training - this cutoff number is determined by % of “energy” captured by the
coefficients. A 3% thresholding would indicate 3/100× 512 ≈ 15 coefficients with the highest L2
norm. When compared with autoencoders, wavelets are advantageous because:

• Wavelet coefficients have a dimensionality orders of magnitude lower than the original
training data, and low dimensional coefficients of a desired size can be computed for
extremely large datasets Pulido et al. (2016); Rodler (1999); Ihm & Park (1999). This
decouples training for each wavelet coefficient from other coefficients, thereby avoiding
communication overheads and memory limitations which otherwise would plague large,
distributed, parallel training tasks.

• Wavelet transform (decomposition) and inverse wavelet transform (reconstruction) can be
computed analytically, making it orders of magnitude cheaper and faster.

• An additional benefit of the analytical formulation translates into ability to extend thresh-
olding, i.e. the scales to be modeled can be explicitly selected a priori to training. (This
is to be contrasted to the convolutional autoencoder handicap which lacked direct control,
apart from selection of kernel size Mohan et al. (2019) during training.)

Our a priori analysis of the 3% thresholding shows that it captures all the large scales, and a ma-
jority of the intermediate scales in turbulence, however excluding sufficiently small scales. This
is an acceptable trade-off, since large and intermediate scales are typical quantities of interest in
majority of practical applications Meneveau & Katz (2000); She & Leveque (1994); Porté-Agel
et al. (2000). We would like to emphasize, however, that including smaller scales by increasing the
thresholding percentage, is a degree of freedom to decide based on the application requirements. In-
creasing thresholding percentage increases the total training duration; but the adaptive, local nature
of the coefficients ensures that the memory cost of training per coefficient stays constant, such that
various coefficients can be trained separately, on available computer resources. This remarkable
feature of the wavelet decomposition makes large scale parallelism a choice - rather than a neces-
sity - thereby opening up this technique to extremely large datasets even with moderate computer
resources available. To further increase compression efficiency we plan to investigate in the future
scale based thresholding (i.e. different thresholds at different scales) as well as integer quantization
(or re-quantization) to reduce the number of bits needed to represent the coefficients. A Schematic
outlining this methodology is illustrated in Fig. 1.

4 RESULTS

The wavelet coefficients are computed with a biorthogonal 1.3 Lee et al. (2019) mother wavelet and
3% thresholding which we only have 15 coefficients to train, out of a total of 512. We compare
accuracy of the NN predictions based on the turbulence diagnostics developed and tested in King
et al. (2018); Mohan et al. (2019). We predict a sequence of flow-fields from the trained model, and
analyze the flow at τ = 1.5, 3 and 4.5, which correspond to non-dimensional eddy turnover times.
Analyzing the statistical properties of the predicted flow at varied time instants allows us to assess
the long-term stability of our temporal predictions.

We now present results by applying 3 diagnostic tests of turbulence on the predicted flow. The
diagnostics are explained in detail in Appendix B. First, we analyze relative significance of different
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(c) Q-R plane: isolines of the velocity gradient
invariants coarse-grained at small, r = 1, iner-
tial, r = 8, and large, r = 32 scales.

Figure 2: Wavelet-CLSTM Neural Network Turbulence vs Physical Simulation (DNS)

HIT scales conducting the energy spectra test. Higher wave-numbers in Fig 2a correspond to smaller
scales. It is clear from the results that the large scale spectra are matched almost exactly, with good
reproduction in the intermediate scale range. Comparatively, small scale spectra are not reproduced
well, which is intentional because a significant portion of small scales were removed (set to zero)
during the thresholding. Effects of the small scale absence is also seen in the Probability Distribution
Function (PDF) of the velocity gradient (Fig 2b), which tests solely the smallest scales of HIT.
This is expected, since we are building a reduced order model for applications where large and
inertial scales are of primary interest. The third test is the Q-R plane diagnostic in Fig 2c, which
offers an arguably more stringent test of three-dimensional structure in turbulence Chertkov et al.
(1999); Chong et al. (1990); Elsinga & Marusic (2010); Suman & Girimaji (2010), as described
in the previous section. We observe in Fig. 2c that the Wavelet-CLSTM reproduces the large scale
behavior almost perfectly, while reproduction of turbulence geometry start to deteriorate as we move
down-scales, to intermediate (r = 8) and small (r = 1) scales. The small scale behavior is not
reproduced due to the 3% thresholding favoring large scales. The symmetric structure seen in the
small scale prediction is likely linked to the noise added by the model. The bottom graphic “Ave”
in Fig. 2c shows the averaged diagnostics for the 3 time instants. Overall, the test results present
ample evidence to the fact that due to the physically-interpretable selection of the wavelet basis, the
Wavelet-CLSTM is capable of modeling the large and inertial scale spatio-temporal dynamics of HIT
well. We point out that it is straightforward to include small scale behavior by including relevant
wavelet coefficients, obviously on the expense of increase in the computational cost. Details of these
diagnostic tests can be found in Appendix B.

5 IMPACT ON EARTH SCIENCES RESEARCH AND CONCLUSION

Climate data is extremely high dimensional and necessitates model reduction for timely, efficient
analysis and insights (Overpeck et al., 2011). Another major application is surrogate modeling
of high-fidelity of geophysical flows (San & Maulik, 2018). We present here the first results for
the novel Wavelet-CLSTM, which is an efficient, scalable, high dimensional deep NN framework
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for reduced modeling of turbulence, and similar or related multi-scale physical phenomena. The
key strength of the framework is in the combination of a well-developed and mathematically justi-
fied wavelet decomposition with its highly desirable physical model reduction and interpretation
power. Further investigation is desired into intelligent thresholding methods for non-stationary
spatio-temporal climate phenomena. Another major application for Wavelet-CLSTM is for learning
low dimensional dynamics of large climate and observational datasets where the governing equa-
tions are not well known, but where the wavelet coefficients can be a rigorous approach to identify
and exploit multiscale patterns.
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(a) Instantaneous turbulent ki-
netic energy

(b) Reynolds number (based on
Taylor microscale) (c) Individual velocity variances

Figure 3: Representative Statistics of the Simulation

A 3D HOMOGENEOUS ISOTROPIC TURBULENCE DATASET AND TRAINING

The dataset consists of a 3D Direct Numerical Simulation (DNS) of homogeneous, isotropic tur-
bulence, in a box of size 1283. We denote this dataset as HIT for the remainder of this work. We
provide a brief overview of the simulation and its physics in this section, and a detailed discussion
can be found in Daniel et al. (2018). The ScalarHIT dataset is obtained using the incompressible
version of the CFDNS (Livescu et al., 2009) code, which uses a classical pseudo-spectral algorithm.
We solve the incompressible Navier-Stokes equations:

∂xi
vi = 0, ∂tvi + vj∂xj

vi = −1

ρ
∂xi

p+ ν∆vi + fvi ,

where fv is a low band forcing, restricted to small wavenumbers k < 1.5 [1]. The 1283 pseudo-
spectral simulations are dealiased using a combination of phase-shifting and truncation to achieve a
maximum resolved wavenumber of kmax =

√
2/3× 128 ∼ 60.

For illustration, Figure 3a shows the turbulent kinetic energy at a time instant. Figure 3b shows
the variation in the Taylor-microscale based Reynolds number with the eddy turnover time, which
characterizes the large turbulence scales. Finally, the variances in all 3 velocity components are
shown in Fig. 3c. Based on the sampling rate, each eddy turnover time τ consists of 33 snapshots.
The training dataset uses 22 snapshots ≈ 0− 0.75τ and test dataset also consists of 22 snapshots in
≈ 4− 4.75τ .

B SOME DIAGNOSTIC TESTS OF TURBULENCE

We now briefly describe 3 basic tests of 3D turbulence which are used as “diagnostic” metrics in
this work, for the accuracy of the flow predicted by the trained model.

B.1 4/5 KOLMOGOROV LAW AND THE ENERGY SPECTRA

The main statement of the Kolmogorov theory of turbulence is that asymptotically in the inertial
range, i.e. at L � r � η, where L is the largest, so-called energy-containing scale of turbulence
and η is the smallest scale of turbulence, so-called Kolmogorov (viscous) scale, F (r) does not
depend on r. Moreover, the so-called 4/5-law states for the third-order moment of the longitudinal
velocity increment

L� r � η : S
(i,j,k)
3

rirjrk

r3
= −4

5
εr, (1)

where ε = νD
(i,j;i,j)
2 /2 is the kinetic energy dissipation also equal to the energy flux.

Self-similarity hypothesis extended from the third moment to the second moment results in the
expectation that within the inertial range, L� rη, the second moment of velocity increment scales
as, S2(r) ∼ vL(r/L)2/3. This feature is typically tested by plotting the energy spectra of turbulence
(expressed via S2(r)) in the wave vector domain, e.g. as shown in the results section.
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B.2 INTERMITTENCY OF VELOCITY GRADIENT

Consequently from Eqn. 1, the estimation of the moments of the velocity gradient results in

Dn ∼
Sn(η)

ηn
. (2)

This relation is strongly affected by intermittency for large values of n (i.e. extreme non-Gaussian
behavior) of turbulence, and is a valuable test of small scale behavior.

B.3 STATISTICS OF COARSE-GRAINED VELOCITY GRADIENTS: Q−R PLANE.

Figure 4: Analysis of Stretching and compression of turbulent structures via Q-R plane PDFs

Both the diagnostics described so far are highly averaged quantities which do not explicitly account
for the flow structure and 3D effects of the predicted velocities. To address this, we utilize isolines
of probability in the Q−R plane, which expresses intimate features of the turbulent flow topology,
having a nontrivial shape documented in literature. We compute two invariants Q and R from the
gradient of the velocity tensor V , as shown in Eqn. 5

M = (∇V )r (3)

R =
−tr(M3)

3
(4)

Q =
−tr(M2)

2
(5)

See Chertkov et al. (1999) and references therein. Different parts of the Q−R plane are associated
with different structures of the flow, as illustrated in Fig. 4. Thus, lower right corner (negativeQ and
R), which has higher probability than other quadrants, corresponds to a pancake type of structure
(two expanding directions, one contracting) with the direction of rotation (vorticity) aligned with
the second eigenvector of the stress. This tear-drop shape of the probability isoline becomes more
prominent with decrease of the observation scale r. Here, we study the Q − R plane filtered at
different scales r, to examine large (r = 32), inertial (r = 8), and small scale (r = 1) behaviors.
This allows us to selectively analyze the accuracy of our predictions at different scales, since we are
interested in primarily the large and inertial ranges for reduced order modeling.
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