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ABSTRACT

Deep learning approaches have shown much promise for earth sciences, especially
in dimensionality reduction and compression of large datasets. A major issue in
deep learning of climate phenomena, like geophysical turbulence, is the lack of
physical guarantees. In this work, we propose a general framework to directly
embed the notion of incompressible fluids into Convolutional Neural Networks,
for coarse-graining of turbulence. These physics-embedded neural networks
leverage interpretable strategies from numerical methods and computational fluid
dynamics to enforce physical laws and boundary conditions by taking advantage
the mathematical properties of the underlying equations. We demonstrate results
on 3D fully-developed turbulence, showing that the physics-aware inductive bias
drastically improves local conservation of mass, without sacrificing performance
according to several other metrics characterizing the fluid flow.

1 INTRODUCTION

A revolution is underway in earth sciences with the promise of neural network (NNs) approaches
in modeling unresolved physics, accurate data compression and model reduction. An important
component is fluid mechanics, where the curse of dimensionality has hindered much progress. There
are two key issues with learning high dimensional data: 1) The computational/memory limitations
in employing enough training parameters 2) The black-box nature of NNs that do not guarantee
physical conservation laws and boundary conditions (BCs). An important example is the continuity
equation, which for incompressible fluids, becomes the divergence-free condition for the velocity
field V:

V.-V =0 (1)
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Recent approaches (Raissi et al., [2019; |Wu et al.l 2019) to incorporate it relies on penalizing the
network in the loss function to encourage solutions to obey Eqn. |1| as well as known BCs. We
call this approach a soft constraint, and the weight of the soft constraint regularization becomes
an additional training hyperparameter. While soft constraints have been popular, they provide no
guarantees due to lack of inductive bias( \Gaier & Hal (2019); Wang et al.| (2019)) in the model.
In this paper, we report first attempts on a general methodology to address these challenges in a
Convolutional Neural Network (CNN) framework with strong inductive bias. We apply this to a
high-fidelity Direct Numerical Simulation (DNS) of a 3D Homogeneous Isotropic turbulence (HIT)
flow, described in Appendix [A] Our approach also adds explainability by interpreting time-tested
strategies from numerical methods and CFD as specific instances of CNN kernels, without any
additional trainable parameters.

2 EMBEDDING PHYSICAL OPERATORS IN CONVOLUTIONAL NEURAL
NETWORKS

We adopt the philosophy of most PDE solvers, where conservation laws and BC constraints are
strictly enforced at all times, rather than penalizing them separately. A core aspect of this is an accu-
rate and unambiguous definition of the operator V- which is also amenable to the backpropagation.
Backpropagation through the physics operators and BC creates a strong inductive bias for the NN.
There are two major challenges: First, Constructing spatial derivatives for differential operators (i.e.
Vx, V-, V2., etc.) that are compatible with the backpropagation. Second, Enforcing BCs for the
velocity fields. We now present our approach to address these challenges.

2.1 SPATIAL DERIVATIVE COMPUTATION IN CNN KERNELS

CNNs are used to learn the spatial features with a convolution kernel f on a domain of interest
g at a layer n. The n'® CNN layer computes y,, = f * g,_1, where g,_ is the output of the
(n — 1)*" layer. Therefore, at layer n + 1, 3,41 = f * gn. The kernel translation is also an
important hyperparameter, called striding, that can be performed for every point in the mesh (1-
step), or by skipping over a two points (2-step). To compute derivatives of field ¢ on a discretized
mesh, we adopt strategies from well-known finite difference (FD)/Finite volume (FV) numerical
methods, which are analytically derived from Taylor series expansions (Ferziger, 1981} [Spalding,
1972)). For a standard 2™ order central difference FV scheme shown in Eqn. [2|(left), Its coefficients
can be expressed in matrix form, called a numerical stencil (right).
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CNN kernels are known to be structurally equivalent to numerical stencils (Long et al.,[2017;|Dong
etal.,[2017). FV stencils are CNN kernels with fixed, non-trainable weights that compute a derivative
to the desired order of accuracy, since both are mathematically identical for 1-step striding. If f is
the FV kernel, and g the numerical mesh, the derivative is g—ﬁ = f * g, at layer n. This simple, but
powerful, connection allows us to embed these stencils as CNN layers to compute our derivatives of

interest, while simultaneously being interpretable.

2.2  ENFORCING PERIODIC BOUNDARY CONDITIONS

The HIT flow has spatially periodic BCs in all three directions and we present here a method to
rigorously enforce these in CNNG, to a desired order of discretization accuracy. Figure [T| shows the
aforementioned CNN stencil kernel on a mesh. The (3 x 3 x 3) kernel performs convolution on ¢ and
the outermost column/row of cells in the mesh are forfeited. A popular CNN fix is to “zero pad” the
boundaries, but this does not enforce BCs and leads to inaccuracies in subsequent derivatives. We
resolve this discrepancy while simultaneously satisfying the BCs, by employing Ghost cells (Fadlun
et al., 2000; Tseng & Ferziger, |2003) from CFD. Ghost cells are “virtual” cells which are defined at
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Figure 1: Periodic BCs enforced as ghost cell padding in CNNs (k*” direction in 3D not shown)

mesh boundaries, so that a derivative of the desired order consistent with the numerical stencil can
be computed. Periodic BCs imply the flow leaving the domain in one direction enter the domain
in the opposite direction. In Fig.[I] we pad with Ghost cells (N + 1, M + 1, L + 1) to mimic this
behavior, and the solutions ¢i,N+17k = ¢i,0,k’ ¢A1+17j,lc = QbO}j,k and ¢i,j7L+1 = (bi,j,O then
exactly satisfy the periodic BCs in the CNN.

3 PHYSICS EMBEDDED CNN ARCHITECTURE WITH HARD CONSTRAINTS
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Figure 2: Physics Embedded Convolutional Autoencoder (PhyCAE) with hard divergence-free con-
straints for coarse grained V'

For incompressible turbulence, a potential formulation (Hirasaki & Hellums| [1968; Morino}, |1985)
based on the Helmholtz decomposition with vector potential A and scalar potential ¢ governs the
flow. For the data analyzed here, the boundary conditions are periodic, so ¢ = 0 is a valid solution.

Vo= VXA+WO 3)

The key idea is as follows: Instead of only predicting a velocity field, we choose to make an in-
termediate prediction for coarse-grained vector potential A, while framing the final prediction V in
the target velocity space via Eqn. |3} implemented as a numerical stencil. Then, predictions V will
automatically obey Eqn. up to the accuracy of the stencil since V-V = V- (V x A) = 0. Fig-
ure [2| shows the autoencoder with a physics-embedded CNN AutoEncoder (PhyCAE) where this
strategy is implemented. We can constrain the network to implicitly learn A by requiring that V x
of the decoder prediction A be equal to V. The ghost cell padding layer enforces BCs and the next
layer computes V x on the A field. Therefore, all layers after the decoder CNN in the PhyCAE are
non-trainable, transparent and interpretable, as they are constructed with numerical methods.
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4  RESULTS

We train two cases: a) Standard CAE with zero padding, and b) PhyCAE which comprises of the
standard CAE with the same hyperparameters (Appendix [A.I]), but with the addition of the physics
embedded layers in Fig.[2l One of the key expectations from any hard constraint is that the network
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Figure 3: Variation of V- V with training epochs for CAE vs. PhyCAE. Final Divergence: ~ 105
for PhyCAE vs ~ 10~2 for CAE

must be cognizant of the imposed physics and BCs from the very first epoch. To quantify how well
the constraint is realized, we measure the total absolute divergence (TAD) across each sample aver-
aged over the samples, given by > |V - V| Note that TAD is not exactly zero due to discretization
and single-precision arithmetic. Figure[3]shows the network TAD on the training data as a function
of training epochs for both CAE and PhyCAE. For CAE, we see a spike in TAD as high as ~ 1071,
and approaches ~ 1072, while the PhyCAE starts at ~ 10~2 and trends downward, even oscillat-
ing near numerical zero, and settles between 10~%* and 10~5. In other words, the best-case for the
CAE is comparable to the worst-case for the PhyCAE. Even for test data, the PhyCAE TAD is more
than 2 orders of magnitude better than CAE, further emphasizing robustness of the physics embed-
dings. We now compare 3 important tests of turbulence as diagnostic metrics for the accuracy of
the coarse-grained flow(Appendix [B). First, the Kolmogorov energy spectra in Figure [da] shows the
spectra of the PhyCAE and CAE V' compared with the DNS test data V. The results show excellent
large scale (low wavenumbers) and inertial range accuracy by the PhyCAE, very similar to that of
CAE. Second, given by probability density functions of velocity gradients is studied in Fig. bl We
see excellent matches between PhyCAE V' and DNS, with PhyCAE being slightly more accurate
than CAE in the tails. Most of the discrepancies are localized at the small scales (high wavenum-
bers), due to the information loss that occurs during coarse graining. This is an acceptable trade-off
since most practical applications of ROMs focus only on large/inertial scales, which are modeled
well. Third, we investigate the isolines of probability in the () — R plane, which is a stringent test
of 3D turbulence at different scales (). Both the networks show that large scale flow topology is
captured extremely well, with inertial scales having minor, but acceptable, discrepancies. The small
scale error is quite significant, as seen from the Kolmogorov spectra and velocity PDF. While CAE
also produces results of comparable accuracy, it lacks in conserving continuity. On the other hand,
PhyCAE shows excellent predictive capability while also closely adhering to the divergence-free
criterion, as seen in Fig. E}

5 CONCLUSION AND IMPACT ON EARTH SCIENCES RESEARCH

Climate data is extremely high dimensional and necessitates compression and model reduction for
timely, efficient analysis and insights (Overpeck et al., [2011). Another major application is sur-
rogate modeling and super-resolution of high-fidelity of geophysical flows (San & Maulikl} [2018).
Incompressible turbulence is commonplace in climate phenomena, and a common difficulty in ML
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Figure 4: Results: PhyCAE V vs. CAEV

for these flows is ensuring mass conservation is strictly obeyed, i.e. V - V' = 0, without increasing
computational costs. This work introduces a structural and interpretable method of enforcing such
laws in CNN architecture as a hard constraint, without additional hyperparameters to tune. The ap-
proach can be extended to general constraints on CNNs of form L(V') = 0 for differential operators
L and fields V, by defining FV stencils of the appropriate order for L. The physics-aware inductive
bias of this CNN allows it to perform far better than vanilla CNN while training with the identical
hyperparameters, without any increase in the number of trainable parameters.
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A 3D HOMOGENEOUS ISOTROPIC TURBULENCE DATASET AND TRAINING

The dataset consists of a 3D Direct Numerical Simulation (DNS) of homogeneous, isotropic tur-
bulence, in a box of size 1283. We denote this dataset as HIT for the remainder of this work. We
provide a brief overview of the simulation and its physics in this section, and a detailed discussion
can be found in Daniel et al.| (2018). The ScalarHIT dataset is obtained using the incompressible
version of the CFDNS [Livescu et al.|(2009) code, which uses a classical pseudo-spectral algorithm.
We solve the incompressible Navier-Stokes equations:
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Figure 5: Representative Statistics of the Simulation

where fV is a low band forcing, restricted to small wavenumbers k < 1.5 [1]. The 128 pseudo-
spectral simulations are dealiased using a combination of phase-shifting and truncation to achieve a

maximum resolved wavenumber of ka0 = V2 /3 x 128 ~ 60.

For illustration, Figure [5a shows the turbulent kinetic energy at a time instant. Figure [5b] shows
the variation in the Taylor-microscale based Reynolds number with the eddy turnover time, which
characterizes the large turbulence scales. Finally, the variances in all 3 velocity components are
shown in Fig. Based on the sampling rate, each eddy turnover time 7 consists of 33 snapshots.
The training dataset uses 22 snapshots =~ 0 — 0.757 and test dataset also consists of 22 snapshots in

~4—4.757.

A.1 TRAINING DETAILS AND EXTENSIONS

The CAE architecture has 3 layer encoder-decoder with an ADAM optimizer and L2 loss, with
only 6 filters at each level to avoid over-fitting and study the effects of inductive bias. In CAE, the
compression ratio between the dimension of a single datapoint (3 x 128%) and that of the latent space
(6 x 15%), is ~ 300. We remark that much like any PDE solver, the discretization errors affect the
accuracy of the hard constraint. Due to the interpretable hard-constraint approach of the PhyCAE,
this could be further decreased by improving the spatial discretization method in Eqn. from a2 to
a higher order scheme. This extension is straightforward since the CNN allows for kernels of larger
sizes produced by higher order numerical schemes. This would require a corresponding change in
number of ghost cells, which can be implemented as outlined in Section[2.2}

B SOME DIAGNOSTIC TESTS OF TURBULENCE

We now briefly describe 3 basic tests of 3D turbulence which are used as “diagnostic”” metrics in
this work, for the accuracy of the flow predicted by the trained model.

B.1 4/5 KOLMOGOROV LAW AND THE ENERGY SPECTRA

The main statement of the Kolmogorov theory of turbulence is that asymptotically in the inertial
range, i.e. at L > r > 1, where L is the largest, so-called energy-containing scale of turbulence
and 7 is the smallest scale of turbulence, so-called Kolmogorov (viscous) scale, F'(r) does not
depend on r. Moreover, the so-called 4/5-law states for the third-order moment of the longitudinal
velocity increment

o plipdpk 4
L>r>q: S0 = —Zer, )
r 5
where € = uDgJ i) /2 is the kinetic energy dissipation also equal to the energy flux.

Self-similarity hypothesis extended from the third moment to the second moment results in the
expectation that within the inertial range, L > rn, the second moment of velocity increment scales
as, So(r) ~ vr (r/L)%/3. This feature is typically tested by plotting the energy spectra of turbulence
(expressed via Sa(r)) in the wave vector domain, e.g. as shown in the results section.
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B.2 INTERMITTENCY OF VELOCITY GRADIENT

Consequently from Eqn.[d] the estimation of the moments of the velocity gradient results in
Sn(n)

o
This relation is strongly affected by intermittency for large values of n (i.e. extreme non-Gaussian
behavior) of turbulence, and is a valuable test of small scale behavior.
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B.3 STATISTICS OF COARSE-GRAINED VELOCITY GRADIENTS: () — R PLANE.
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Figure 6: Analysis of Stretching and compression of turbulent structures via Q-R plane PDFs

Both the diagnostics described so far are highly averaged quantities which do not explicitly account
for the flow structure and 3D effects of the predicted velocities. To address this, we utilize isolines
of probability in the ) — R plane, which expresses intimate features of the turbulent flow topology,
having a nontrivial shape documented in literature. We compute two invariants () and R from the
gradient of the velocity tensor V, as shown in Eqn.[g]

M = (VV), (6)
_ 3

- ) o
—tr(M?

@ = ®)

See [Chertkov et al.| (1999) and references therein. Different parts of the () — R plane are associated
with different structures of the flow, as illustrated in Fig.[6] Thus, lower right corner (negative @ and
R), which has higher probability than other quadrants, corresponds to a pancake type of structure
(two expanding directions, one contracting) with the direction of rotation (vorticity) aligned with
the second eigenvector of the stress. This tear-drop shape of the probability isoline becomes more
prominent with decrease of the observation scale r. Here, we study the () — R plane filtered at
different scales r, to examine large (r = 32), inertial (r = 8), and small scale (r = 1) behaviors.
This allows us to selectively analyze the accuracy of our predictions at different scales, since we are
interested in primarily the large and inertial ranges for reduced order modeling.
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