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ABSTRACT

The expansion of human settlements in Peru has caused risk exposure to land-
slides. However, this risk could increase because the intensity of the El niño
phenomenon will be greater in the coming years, increasing rainfall on the Pe-
ruvian coast. In this paper, we present a novel methodology for detecting housing
areas and agricultural lands in low-resolution satellite imagery in order to ana-
lyze potential risk in case of unexpected landslides. It was developed by creating
two datasets from Lima Metropolitana in Peru, one of which is for detecting dry
riverbeds and agriculture lands, and the other for classifying housing areas. We
applied data augmentation based on geometrical methods and trained architectures
based on U-net methods separately and then, overlap the results for risk assess-
ment. We found that there are areas with significant potential risk that have been
classified by the Peruvian government as medium or low risk areas. On this ba-
sis, it is recommended obtain a dataset with better resolution that can identify how
many housing areas will be affected and take the appropriate prevention measures.
Further research in post-processing is needed for suppress noise in our results.

1 INTRODUCTION

The detection of landslides in satellite images has received great attention in recent years, due to its
relationship with urban planning and land use. Based on the research of Wang et al [1], El Niño
phenomenon will have greater intensity in the coming years, whose effects will generate landslides
and floods in the South American Pacific coastal area, but it is in Peru where the effects of this phe-
nomenon have a greater socioeconomic impact due to its geographical location, poor urban planning
and the activation of dry riverbeds 1 that had remained passive for years, as observed in 2017, when
there was at least three hundred and seventy two thousand damaged homes, according to statistics
from INDECI [2].

One of the ways to analyze this problem is to have information about the landslide susceptibility
which it has received extensive research. Moayedi et al.[3] developed a hybrid model called PSO-
ANN to create landslide susceptibility maps over the city of Kermanshah, Iran, and more recently
Ghorbanzadeh et al [4] showed that convolutional neural networks of deep learning have better
performance than traditional machine learning methods that use 4-band images from Nepal and
China. In addition, there are datasets that contain land cover classification and building footprint
detection such as DeepGlove [5], EuroSat [6] and SpaceNet [7] that have promoted the development
of different investigations related to semantic segmentation approach [8, 9, 10].

∗equal contribution
1Dry riverbed is a type of landslide which course is channeled, as shown in Figure 2, and in Peru it is

common to find constructions in the course of dry riverbeds as shown in Figure 3
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Although there are numerous approaches to the detection of landslides and buildings separately,
none analyzes the direct relationship between floods or landslides in populated and agricultural ar-
eas. In addition, there is no dataset available focused on Peruvian geography. So this is the main
reason a novel approach is developed whose methodology consists in: (1) obtaining two correspond-
ing novel datasets, the first has dry riverbeds, risk areas and agriculture, while the second one has
residential, human settlement and industrial areas; (2) the increase of the dataset that performs ge-
ometric operations, as well as its preprocessing; (3) The selection of the appropriate deep learning
method that can classify pixels; and (4) Fusion of results for risk analysis. Finally, discussion and
future work that will be developed for this approach.

2 DATASET AND EVALUATION METRIC

The low resolution satellite imagery used for both tasks were collected by RapidEye satellite pro-
vided by Planet Labs through its imagery exploration toolkit. This satellite imagery has 3-band
natural color (red, green, blue) and a 5m pixel resolution. For the purpose of this research, the full
dataset covers a total of 450 km2 of our study zone: Lima, Peru. Each image has been labelled
manually using LabelMe software [11] as the selected annotation toolkit. Each image is paired with
a ground truth mask2 , samples are shown in Figure 4 and Figure 5. The masks are images with a
total of 3 different classes and depend on the task. Task 1 is for detecting mainly dry riverbeds and
agriculture lands and Task 2 for detecting types of housing areas, the descriptions of each class are
shown in Table 1 and Table 2.

We carefully annotated our dataset to avoid overlapping in the annotations and they do not always
have all of the classes in one image. The annotations are not perfect due to the fact that many areas
can be not seen easily to determine for which class belongs.

Table 1: Description of classes for task 1

Value Class RGB Description

1 Dry riverbed (1,0,0) channel where used to flow a river
2 Inhabited land (0,1,0) any kind of building
3 Agriculture land (1,1,0) croplands, farms
0 Background (0,0,0) others

Table 2: Description of classes for task 2

Value Class RGB Description

1 Residential (0,1,0) area where housing predominates
2 Human settlement (1,0,0) areas in initial process of colonization
3 Industrial (1,1,0) industrial plant, farm, warehouse
0 Background (0,0,0) others

We used the mean overlap or dice coefficient(F1 score) as evaluation metric:

Dice− Coefficient =
1

n

c=n∑
i=1

S, S =
2TPc

2TPc + FPc + FNc

where TPc stands for true positive pixel in class c applied to the full output of the model in evalua-
tion; FPc, false positive pixels in class c and FNc, false negative pixels in class c. Then the average
is computed over all the different classes that we selected depending on the task.

2RGB color code for visualization
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3 METHODS

In order to do an evaluation of risk areas, we split the workflow in two tasks, following the flowchart
shown in Figure 6. Both tasks are designed like a segmentation-based approach. The first task aims
to identify mainly dry riverbeds and agriculture lands, and the second task aims to identify different
types of housing areas in satellite imagery. The main reason is to overlap the results from both tasks
and find the housing areas over dry riverbeds, which implies the housing areas are in potential risk
in case of unexpected landslide.

3.1 DATA AUGMENTATION

On small-scale dataset, data augmentation has been playing a significant role for deep learning
models, since this technique tackles potential problems(i.e. overfitting), improves the distribution
of the dataset and the generalization ability of the deep learning model[12]. Since we have a small
number of training samples in both tasks, we used data augmentation with different methods which
include rescaling, flipping, cropping, rotation and canal shuffling. The data collection for each
task described in section 2 has been preprocessed for each semantic segmentation model. For the
first task, a large satellite image has been sliced in 100 chips with a size of 590x590 pixels with
overlapping, and for the second task the selected size was 512x512 pixels. For both tasks we only
considered chips as inputs if they had annotations.

3.2 MODEL ARCHITECTURES

Since this is a semantic segmentation approach for multi-class segmentation, three architectures
have been implemented and compare each other using the evaluation metric mentioned in section
2. U-Net architecture [13] was initially used for biomedical image segmentation, but it has been
proved that it has awesome performance in satellite imagery tasks [14, 15] with small quantities of
data. This architecture has two main sequential sides: The first side of the model, known as down-
sampling, extracts feature maps by applying 3x3 convolutions using rectified linear unit (ReLU)
as activation function, then 2x2 max pooling operation with a stride value of 2. The second side
consists in upsampling the feature maps, generated by the downsampling side, then operates with
a 2x2 convolution, this will expand it to the original input size. Deep Residual Unet architecture
[16] was proposed for road extraction task, this model is based on the combination of the U-Net
architecture and residual neural network. The residual unit tackles the degradation problem, so in-
formation propagation through the network will not face this issue. Finally, Deep UNet architecture
[17], which is also based on U-Net but it uses down-sampling blocks in the downsampling side and
up-sampling blocks in the upsampling side. Each model outputs a 2-D matrix, which each pixel is
assigned to its corresponding predicted class value.

3.3 IMPLEMENTATION DETAILS

The mentioned models were implemented on Tensorflow and have been trained in the cross-entropy
loss function. We made comparisons using different optimizers such as SGD, RMS prop, Adam
with different learning rate(0.01, 0.001, 0.0005), Nadam and Adadelta. A Nvidia GeForce GTX
1080 was used to train our networks, each of them with 300 epochs and a batch size of 4 images and
masks.

4 RESULTS

The results of our experiments are based on the validation set. We evaluated the performance of dif-
ferent optimizers mentioned in 3.3 with the architectures and experimental results,based on Figure
1, shows the Adadelta, NAdam and Adam with learning rate of 0.0005 have slightly better perfor-
mance. Then we computed the evaluation metric of each class, since it is more indicative for the
performance of the selected architectures and optimizers.

The results and comparison are shown in Table 3 and Table 4 for each task. The columns shows the
best performer architecture with different optimizers and F1 score separated into the classes, then the
average with background and without background. For the first task, Unet with Adadelta optimizer
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generated the best performance and for the second task, Residual Unet with Adadelta optimizer, as
well. Samples of the original input image, ground truth and prediction mask from each task are
shown Figure 7 and Figure 8.

Figure 1: Performance results for the different optimizers.

Table 3: Experimental results for Task 1

Model F1 Score
0 1 2 3 Avg Avg (w/o background)

Unet + Adam 0.95 0.56 0.722 0.905 0.784 0.729
Unet + Adadelta 0.957 0.641 0.722 0.918 0.809 0.760

Unet + Adam(lr=0.0005) 0.953 0.593 0.72 0.913 0.795 0.742

Table 4: Experimental results for Task 2

Model F1 Score
0 1 2 3 Avg Avg (w/o background)

Residual Unet + Adadelta 0.961 0.531 0.77 0.319 0.645 0.54
Residual Unet + Adam 0.963 0.551 0.803 0.232 0.637 0.529

Residual Unet + NAdam 0.965 0.608 0.829 0.096 0.603 0.509
Residual Unet + Adam(lr=0.0005) 0.961 0.547 0.785 0.269 0.641 0.534

5 CONCLUSIONS AND FUTURE WORK

In this work, we have proposed a methodology for detecting housing areas in low-resolution satellite
imagery in order to analyze potential risk in case of unexpected landslides. The proposed method-
ology verified that there is housing areas lying on dry riverbeds which implies that these areas are in
significant potential risk, even though that these are considered as low susceptibility areas based on
the map in Figure 9.

For future work, we will focus on post processing techniques in order to obtained better results, also
it is very promising that the performance will improve with different modern semantic segmentation
algorithms. It would be beneficial for monitoring the urban planning problem in real time in the
Peruvian coast and other places with similar geography.
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A APPENDIX: SAMPLE OF DRY RIVERBED IN PERU

Figure 2: Idealized scheme of the operation of an alluvial fan at the exit of a dry riverbed, with
indication of the flow directions. Image from Pedraza, J. Geomorfologı́a: principios, métodos y

aplicaciones(Madrid:Rueda, 1996),414

Figure 3: Huaycan - Lima, the yellow lines show the direction of debris flow, the red ones (A)
indicate the houses built in the middle of dry riverbed. Image from Villacorta Chambi et al.

Peligros geológicos en el área de Lima Metropolitana y la región Callao N◦59(Lima:Instituto
Geológico, Minero y Metalúrgico,2015)
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B APPENDIX: DATASET VISUALIZATION

Figure 4: Samples from dataset for Task 1 with the mentioned classes in Table 1

Figure 5: Samples from dataset for Task 2 with the mentioned classes in Table 2
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C APPENDIX: FLOWCHART

Figure 6: Flowchart of the proposed methodology.
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D APPENDIX: PREDICTIONS

Figure 7: Samples of the results from Task 1. First column has the original images, second column
has the ground truth mask an the third has the predicted mask.

Figure 8: Samples of the results from Task 2. First column has the original images, second column
has the ground truth mask an the third has the predicted mask.
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E APPENDIX: FLOOD SUSCEPTIBILITY MAP

Figure 9: The flood susceptibility map provided by INGMMET. The blue circles indicate areas
found by the algorithm with a high potential risk. Image from Villacorta Chambi et al. Peligros
geológicos en el área de Lima Metropolitana y la región Callao N◦59(Lima:Instituto Geológico,

Minero y Metalúrgico,2015)
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