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ABSTRACT

We create a new semi-supervised clustering method, that can be used in a wide
range of problems. The clustering is based on a graph Laplacian similarity matrix
and has a closed form solution, which enables us to cluster very large unstruc-
tured datasets rapidly (> 107 samples). In this work, we apply our method to
oil prospectivity, based on seismic surveys and intersecting boreholes. Our clus-
tering method can be extended to a pseudo-labelling deep learning scheme, and
furthermore have the capability to utilize an octree mesh for larger datasets or
faster clusterings.

1 INTRODUCTION

Semi-supervised learning (SSL) has been rapidly improving in the last few year, as evidenced by
the Cifar 10 benchmark test (Krizhevsky et al., 2009), which in the last 5 years have had at least
15 different SSL state-of-the-art methods that have taken the accuracy from 79.6 % (Rasmus et al.,
2015) to an impressive 97.3 % (Xie et al., 2019). These rapid improvements, combined with its
broad domain of applicability, makes SSL particularly attractive for many problems in science.

While the usage of machine learning is growing rapidly, there are several issues holding it back,
especially in science; one thing is its notorious reputation for being a black box, from which little
insight is gained (Castelvecchi, 2016). Secondly, machine learning is often associated with a heavy
computational burden, which prohibits a lot of people from using it (Karras et al., 2019).

In the following, we approach semi-supervised learning from a minimalistic point of view. We
create an objective function, which we minimize in order to develop a graph Laplacian based semi-
supervised clustering method (Von Luxburg, 2007). In this way, we are capable of creating a clus-
tering algorithm with a closed form expression that requires very limited computational power.

Our objective function can be thought of as an extension/improvement of the objective developed in
Zhou et al. (2004). The key difference between our objective function and theirs, is that ours includes
a constraint. Without this constraint, the clustering can predict the probable order of classes (i.e.
which classes are more/less likely than others), but not their actual probabilities. Furthermore, while
the constraint does add extra steps into the calculations, the overall result is a boost in computational
time, due to the fact that the constraint can replace one of the linear systems that would normally
need to be solved. This is particularly relevant in our two class example, where the clustering time is
nearly halved. Finally, the constraint enables us to handle problems where the known labels contain
a mix of different classes, as shown in our example.

Iscen et al. (2019) used the objective given in Zhou et al. (2004) and combined it with a deep neural
network in a pseudo-labelling approach to perform image classification. Their approach achieved
state-of-the-art results, and shows how a clustering approach can be combined with a deep neural
network. While their results are impressive, their approach does have one issue. Since they use
the objective function developed in Zhou et al. (2004), their clustering return pseudo-probabilities,
which should not be used as entropy weights. By including our aforementioned constraint, this could
easily be remedied.
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In the following, we show how our method can be applied to oil prospectivity. Predicting oil is a
highly sought target in petrophysics, and is traditionally regarded as being a notoriously hard prob-
lem, due to the convoluted relationship between the parameters typically derived from a seismic
survey and oil. Yu et al. (2008) predicts oil reservoirs using a fusing of genetic algorithms, sim-
ulated annealing and error back propagating neural networks. Jian & Fanhua (2009) predicts oil
bearing sand using seismic inversion combined with 3D geologic modelling and petrophysical rela-
tions. Powers et al. (2018) utilize a Markov chain Monte Carlo method and combine it with a naive
Bayesian classifier, which enables them to bin the well production and produce an oil prediction
map.

A standard inversion of a seismic survey gives a set of parameters discretized in a 3D volume. In
the framework of machine learning, each point in this 3D volume can be thought of as an unlabelled
data point, with the parameters generating the features of each data point. Boreholes intersecting the
data volume can be utilized to generate labelled data. Borehole data are prohibitively expensive to
get in comparison to seismic data, so typically the amount of labelled data will be severely limited
in comparison to the amount of unlabelled data, which is exactly the domain of semi-supervised
learning.

METHOD

Assume that we are given a dataset X ∈ Rn×l, where n is the number of data points, and l is the
number of features. Hence, each row of the matrix represents a data point. Let Xk, be a known
labelled subset of X, with prior associated label probabilities Uobs

k ∈ Rnk×nc , where nc is the
number of classes in the data, and nk is the number of known labelled points. The goal in semi-
supervised learning is to find a probability matrix U ∈ Rn×nc , which matches Uobs

k on the known
subset and gives a reasonable estimate of the probabilities on all the remaining data points.

CREATING AN OBJECTIVE FUNCTION

Our objective function is given as:

φ(Y) =
α

2n
Tr

[
Y>LY

]
+

1

2
||Y −Yobs||2W ,

st. Ye = 0, (1)

with α being a scalar hyper-parameter, determining the relative strength between the two terms. L
is the symmetric-normalized graph Laplacian (Von Luxburg, 2007), e is a unity vector, and Y is a
pseudo-probability matrix, connected with the normal probability U through a softmax normaliza-
tion:

U = exp(Y)�
(
exp(Y)ee>

)
. (2)

The idea is that a minimization of equation 1 will lead to reasonable label probabilities, since the
second term penalizes known data points that do not match their label pseudo-probabilities, while
the first term connects all points with their most similar points and encourage them to have similar
label probabilities. The constraint ensures that each probability corresponds to exactly one pseudo-
probability, which enables us to find Yobs based on Uobs:

Yobs = log(Uobs)− log(Uobs)e

e>e
⊗ e>. (3)

By taking the derivative of the objective function given in equation 1, a closed form minimization of
Y can be found:

Y =
(
n−1αL+W

)−1
WYobsC, (4)

where C = I− ee>

e>e
is a centering matrix, and W is the diagonal normalized weight matrix, which

fulfils the normalization, Tr(W) = 1, and has zeros on the diagonal for all unknown points.

Equation 4 can for some problems be ill-conditioned. In those cases a small identity matrix can be
added to stabilize the solution. Note that the system is decoupled over the classes, so each class can
be solved independently. Furthermore, since the solution by construction will fulfil the constraint
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Ye = 0, we only have to solve equation 4 for nc − 1 classes. So the solution strategy is to solve
equation 4 for nc − 1 classes, use the constraint Ye = 0 to get the last class pseudo-probability,
and then convert the pseudo-probabilities to probabilities using the softmax normalization given in
equation 2.

EXAMPLE - SEAM LIFE OF FIELD

Figure 1: Overview of the SEAM Life of Field dataset, taken and modified from Oristaglio (2016).
The model shows the fault lines, as well as the 17 boreholes that goes through the reservoir. The
superimposed color scale shows vertically summed oil volume, with purple being high production
and dark blue being low. The gray square indicates our modelling area.

We apply our clustering approach to the synthetic SEAM Life of Field dataset (Oristaglio, 2016;
Oppert et al., 2017), which is a highly realistic synthetic oil reservoir, containing: a gas cap, an oil
leg, a brine section below, and three fault lines - as shown in Figure 1. Our data covers the central
region of the oil zone, and is shown in Figure 2. The data consist of 181 x 221 x 157 data points
(x,y,z). In each data point we have five inverted parameters, provided from an amplitude versus
angle inversion: density, porosity, lithology, VpVs, and acoustic impedance. Furthermore, we have
17 boreholes going through our dataset - 11 production wells, and 6 injection wells, each with a
well-log.

(a) 3D overview (b) 3D overview

Figure 2: Overview of our SEAM dataset. The two blue planes are the top and bottom layer of our
data, while the black lines are production wells and the red lines are injection wells.

DATA PREPARATION

Each parameter is standardized by setting the mean to zero and the variance to one.

As features, we utilize the value and x/y/z-neighbours mean and difference of each of the 5 parame-
ters given to us. This means that each parameter is represented by 7 features that gives information
about its value as well as gradient. Finally, for added data-locality we chose to include the standard-
ized x,y,z coordinates as features. In total this leads to each data point having 38 features.
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The graph Laplacian is based on the approximate nearest neighbours approach known as Hierarchi-
cal Navigable Small World graphs (Malkov & Yashunin, 2018), with an `2 metric and 40 neighbours.

For this problem, we assign each data point two classes, oil and no-oil, and assume that the oil
probability is linearly correlated with oil volume. As labelled data we utilize the data points closest
to each borehole in each layer, and assign oil volume based on the well-log information.

The labels we assign to the points belonging to a well sums up to the oil produced by that well,
with the amount of oil in each point being inversely proportional to the fractional shale content of
the point, as provided by the well-log. This means that if the well logs lithology says there is 100
% shale in a point, its label will have 0 oil probability. For the injection wells we only label points
containing 100 % shale, these gets labelled as 0 oil data points. On top of the labelled points we
get from the well-logs, we also apply boundary constraints. Applying boundary constraints is not
strictly necessary, but helps stabilize the solution. In this particular example, we have production
wells relatively close to the edge of our simulation area, and thus we need to set very loose boundary
constraints. We set the boundary points on all 4 sides to 0 with a weight of 10−4 (all other labelled
points have a weight of 1).

In total this leads us to have 6,280,157 data points, 2068 labelled data points from boreholes, and
126,228 weakly labelled boundary points.

RESULTS

Following Iscen et al. (2019), we set α = 100, which gives a reasonable balance between matching
the labelled data points and fulfilling the regularization constraints. From the clustering we get an
oil volume prediction in each data point, which shows a clear central oil deposit, bounded by the
fault lines. Figure 3 features two slices through the oil deposit and shows that the clustering looks
reasonable and consistent on an individual data point level.

Figure 3: 3D slices of the clustering. The oil deposit is clearly visible in the central fault block.
Furthermore, the clustering is showing the foldings in the earth.

From this clustering we can estimate the total oil volume, by vertically summing the oil in each
layer. Figure 4 shows the total oil, scaled to match the boreholes. The scaling is made in order for
us to estimate the error of our clustering and depends on how we define the oil produced by a well.
We tested a few simple approaches and ended up using the following: Each well is approximated
as a single vertical drilling, with its horizontal location given as the mean horizontal location of all
points of the well intersecting the modelling area. Around each well we define all points x within
100 m as contributing to the well. The production of the well, P , is then given as:

P =
1

2
min(p) +

1

2nx
p>w, (5)

where p is the production belonging to the selected points x, nx is the number of point in x, and w
is the weight of each point, which is related to the points `2 distance, d, from the well: w = 1

1+d .
Defining the oil production in this way, leads to a simple yet robust model.
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Based on this, we can estimate the error of our clustering. We find an average production well error
of 21.4 %. The oil volume shown in Figure 4 shows similar trends to the oil volume shown in Figure
1.

Figure 4: Oil prediction based on our semi-supervised clustering approach. The black circles desig-
nate production wells, while the diamonds designates injection wells.

To further test our method, we have done cross-validation on the above dataset, where we leave out
4 of the 11 production wells and test the predictive power across all possible 330 combination this
result in, which increased the error to 36.15%.

PERFORMANCE

The approach presented here offers a simple method for predicting oil production that can be done
on even modest computers. Calculating the graph Laplacian is the heaviest computational task,
which takes ∼ 5 hours for ∼ 6 million data points with 40 neighbours. When the graph Laplacian
has been computed, a clustering can be done in ∼ 15 minutes on a single core on an Intel Xeon
Processor E5-2670.

DISCUSSION & FUTURE WORK

Our oil clustering results are reasonable, but could likely be improved with more complex/realistic
assumptions. Currently, we ignore any lateral change in the boreholes intersection path through the
data volume, when we scale the oil volume to match the boreholes, even though all boreholes in
this example have some lateral change. The dataset has previously been explored with Bayesian
machine learning techniques as presented in Powers et al. (2018), which used the same amplitude
versus angle inversion properties as this work. Their method required serious computational power,
and had trouble predicting the sharp contrasts encountered around the fault lines, which our method
seems to handle better.

We have also applied the method successfully to field data, where we had even larger datasets con-
sisting of roughly 9.6M samples. In that case we utilized octree meshing (Haber & Heldmann, 2007;
Horesh & Haber, 2011), to increase performance.

CONCLUSIONS

We have developed a simple semi-supervised clustering approach, which can be combined with deep
neural networks to perform generative image classification, as done in Iscen et al. (2019). In this
work however, we use the clustering approach to successfully predict oil. We hope our method and
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example can help illuminate a field which is often regarded as a black box, and show one way to
recast problems into the framework of semi-supervised learning, by using simple assumptions.
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