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ABSTRACT

Given the importance of remote sensing, surprisingly little attention has been paid
to it by the representation learning community. To address it and to establish
baselines and a common evaluation protocol, we provide simplified access to 5
diverse remote sensing datasets in a standardized form. These datasets cover op-
tical, multi-spectral and synthetic aperture radar (SAR) modalities across various
Earth Science application target domains. Next, we investigate the development
of generic remote sensing representations, and explore which characteristics are
important for a dataset to be a good source for representation learning. As the
results indicate, especially with a low number of available training samples, a sig-
nificant performance enhancement can be observed when using in-domain data
for pre-training in comparison to training models from scratch or fine-tuning only
on ImageNet (up to 11% and 40%, respectively, at 100 training samples). All
datasets and pretrained representation models are published online.

1 INTRODUCTION

Remote sensing via computer vision and transfer learning is an important domain to address climate
change as outlined by Rolnick et al. (2019). Among others, research in remote sensing promises
to help in solving challenges in various Earth Science domains, including food security (precision
farming), water sustainability, disaster prevention (floods/landslides/earthquake forecasting), defor-
estation or wild fire detection, urban planning, and monitoring of carbon stocks and fluxes or of the
air quality.

On the one hand, the number of Earth observing satellites is constantly increasing, with currently
over 700 satellites monitoring many aspects of the Earth’s surface and atmosphere from space, gen-
erating terabytes of imagery data every day that only automated machine learning systems will be
able to process to retrieve all information of interest. And on the other hand, the ground truth label
data – as needed for good model training and calibration – is costly to acquire, usually requiring
extensive campaign preparation, people and equipment transportation, and in-field gathering of the
characteristics under question.

Transfer learning is an approach that enables to pre-train upstream a representation model on a large
dataset, and to apply the learned knowledge downstream to another related problem, for instance
via fine-tuning on a specific target dataset, reducing significantly the number of required training
samples. Often, ImageNet fine-tuning is used for knowledge transfer, but many other approaches
exist (Zhai et al., 2019).

In this paper we explore representation learning for remote sensing, and in particular in how much
in-domain knowledge from related datasets could help in representation learning. We look into what
kind of data characteristics are important for good representation learning, and how the performance
behaves at variable (especially smaller) downstream training sizes.

Recently, new large-scale remote sensing datasets have been generated, eg. (Zhu et al., 2018; Sum-
bul et al., 2019; Schmitt et al., 2019) that could be used for representation learning. However, a
consistent evaluation framework is still missing and the performance is usually reported on non-
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Table 1: Overview of considered remote sensing datasets.

Name year Source Size Classes Image size Resolution Problem

BigEarthNet 2019 Sentinel-2 590k 43 120x120* 10–60 m multi-label
EuroSAT 2019 Sentinel-2 27k 10 64x64 10 m multi-class
RESISC–45 2017 aerial 31.5k 45 256x256 0.2–60+ m multi-class
So2Sat 2019 Sentinel-1/2 376k 17 32x32 10 m multi-class
UC Merced 2010 aerial 2.1k 21 256x256 0.3 m multi-class

*Image size varies in dependence of resolution from 120x120 to 60x60 to 20x20.

standard splits and with varying metrics, making reproduction and quick research iteration difficult.
To address this, we identified five representative and diverse remote sensing datasets and process
them in a standardized form. In summary, the main contributions of this work are:

• Exploring in-domain supervised fine-tuning to train generic remote sensing representations.
• Establishing performance baselines for the BigEarthNet, EuroSAT, RESISC–45, So2Sat,

and UC Merced datasets, achieving state-of-the-art for datasets where comparison with
past results was possible.

• Publishing 5 existing remote sensing datasets1 in a standardized format and the best trained
representations2 for easy reuse by the community.

2 DATASETS

For this work, five diverse datasets were selected, prioritizing newer and larger datasets that are quite
diverse from each other, address scene classification tasks, and include at least optical imagery.

Image data comes either from aerial high-resolution imagery or from satellites. Three datasets in-
clude imagery from the European Space Agency’s (ESA) Sentinel-2 satellite constellation, that pro-
vides medium resolution imagery of the Earth’s surface every three days. The multi-spectral imager
on Sentinel-2 delivers next to the 3 RGB channels additional channels at various frequencies (see
Appendix A.1). One dataset includes co-registered imagery from a dual-polarimetric synthetic aper-
ture radar (SAR) instrument of ESA’s Sentinel-1.

Besides the differences in data sources, number of training samples, number of classes, image sizes
and pixel resolutions (summarized in Table 1), the datasets are also quite diverse across:

• Intra- and inter-class visual diversity: some datasets have high in-class and low between-
classes diversity and vice versa.

• Label imbalance: some datatasets are perfectly balanced, while others are highly unbal-
anced.

• Label domain: land-use land cover (LULC), urban structures, fine ecological labels.
• Label quality: from fine human selection to weak labels from auxiliary datasets.

To simplify access to the data and its usage, these datasets are published datasets in Tensorflow
Datasets (TFDS). For reproducability and a common evaluation framework, standard train, valida-
tion, and test splits using the 60%, 20%, and 20% ratios, respectively, were generated for all datasets
except So2Sat3.

These datasets are (see Appendix A for examples and label distributions):

BigEarthNet (Sumbul et al., 2019) is a challenging large-scale multi-spectral dataset consisting of
590,326 image patches from the Sentinel-2 satellite. 12 frequency channels (including RGB) are

1Published at www.tensorflow.org/datasets.
2Published at www.tfhub.dev.
3For the So2Sat dataset, the source already provides train and validation splits. To generate the test split,

the original upstream validation is separated into validation and test splits with the 25% and 75% ratios, respec-
tively.
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provided, each covering an area of 1.2 × 1.2 km with resolutions of 10 m, 20 m, and 60 m per
pixel. This is a multi-label dataset where each image is annotated by multiple land-cover classes.
The label distribution is highly unbalanced ranging from 217k images of “mixed forest” label to
only 328 images with label “burnt areas”. About 12% of the patches are fully covered by seasonal
snow, clouds or cloud shadows. The only available public baseline metrics include precision and
recall values of 69.93% and 77.1%, respectively, for using a shallow CNN on a reduced dataset,
after removing the snow and cloud affected samples.

EuroSAT (Helber et al., 2019) is another recently published dataset containing 27,000 images from
Sentinel-2 satellites. All 13 frequency bands of the satellite are included. Each image covers an area
of 640× 640 meters and is assigned to one of 10 LULC classes, with 2000 to 3000 images per class.
Because the classes are quite distinctive, very high accuracies can be achieved when using the entire
dataset for training.

NWPU RESISC–45 (Cheng et al., 2017) dataset is an aerial dataset consisting of 31,500 RGB
images divided into 45 scene classes. Each class includes 700 images with a size of 256 × 256
pixels. This is the only dataset with varying spatial resolution ranging from 20 cm to more than 30
meters. The data covers a wide range of countries and biomes. During the construction, the authors
paid special attention to have classes with high same-class diversity and between-class similarity to
make it more challenging.

So2Sat LCZ-42 (Zhu et al., 2018) is a dataset consisting of co-registered SAR and multi-spectral
320 × 320 m image patches acquired by the Sentinel-1 and Sentinel-2 remote sensing satellites,
and the corresponding local climate zones (LCZ) (Stewart & Oke, 2012) labels. The dataset is
distributed over 42 cities across different continents and cultural regions of the world. This is another
challenging dataset and it is intended for learning features to distinguish various urban zones. The
challenge of this dataset is the relatively small image size (32×32) and the relatively high inter-class
visual similarity.

UC Merced Land-Use Dataset (Yang & Newsam, 2010) is a high-resolution (30 cm per pixel)
dataset that was extracted from aerial imagery from the United States Geological Survey (USGS)
National Map over multiple regions in the United States. The 256 × 256 RGB images cover 21
land-use classes, with 100 images per class. This is a relatively small datasets that has been widely
benchmarked for remote sensing scene classification task since 2010 and for which nearly perfect
accuracy can be achieved with modern convolutional neural networks (Castelluccio et al., 2015;
Marmanis et al., 2016; Nogueira et al., 2017).

3 REMOTE SENSING DATA PROCESSING

The remote sensing domain is quite distinctive from natural image domain and requires special
attention during pre-processing and model construction. Some characteristics are:

• Remote sensing input data usually comes at higher precision (16 or 32 bits).

• The number of channels is variable, depending on the satellite instrument. RGB channels
are only a subset of a multi- or hyper-spectral imagery dataset. Other data sources might
have no optical channels (eg. radar or lidar) and the channels distribution can be determined
by polarimetric, interferometric or frequency diversity.

• The range of values varies largely from dataset to dataset and between channels. The values
distribution can be highly skewed.

• Many quantitative remote sensing tasks rely on the absolute values of the pixels.

• The images acquired from space are usually rotation invariant.

• Source data can be delivered at different product levels (for instance w/ or w/o atmospheric
correction, co-registration, orthorectification, radiometric calibration, etc.).

• Especially lower resolution data aggregates a lot of information about the illuminated sur-
face in a single pixel since it covers a large area.

• Image axes might be non-standard, eg. representing range and azimuth dimensions.
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Table 2: Performance of trained In-Domain and ImageNet representations (rows) when using 1000
training examples for downstream tasks (columns). Emphasized (bold font) are the best accuracies
per downstream task (column).

Source \Target BigEarthNet EuroSAT RESISC–45 So2Sat UC Merced

ImageNet 25.10 96.84 84.89 53.69 99.02
BigEarthNet - 96.45 78.43 50.91 99.61
EuroSAT 27.10 - 79.59 52.99 98.05
RESISC–45 27.59 97.14 - 54.43 99.61
So2Sat 26.30 96.30 77.70 - 97.27
UC Merced 26.86 96.73 85.73 53.52 -

This sets some requirements on pre-processing and encourages to adjust data augmentation of the
input pipeline for remote sensing data.

Specifically for the problems discussed in this paper, it is recommended to rescale and clip the range
of values per channel (accounting for outliers). Data augmentation that affects the intensity of the
values should be discarded. On the other hand, one can reuse the rotation invariance and extend
the augmentation to perform all rotations and flipping (providing 7 additional images per sample).
Given multi-spectral data, such as Sentinel-2 based BigEarthNet, EuroSAT and So2Sat, one can use
other subsets of channels instead of RGB including all available ones.

4 APPROACHES AND EXPERIMENTAL SETUP

The main goal is to develop representations that can be used across a wide range of unseen remote
sensing tasks. The training and evaluation protocol follows two main stages: (1) upstream training of
the representations model based on some out- or in-domain data, and (2) downstream evaluation of
the representations by transferring the trained representation features to the new downstream tasks.
For the upstream training the full datasets are used. The downstream training is performed using a
pre-specified number of samples to assess the generalization of the trained representations and does
never include any data that was used for upstream training.

All experiments use the same ResNet50 V2 architecture (He et al., 2016) and configuration with a
sweep over a few hyper-parameters to account for the varied number of classes and training samples
in the various datasets, as described in detail in Appendix B.

For multi-class problems performance is reported using the Top-1 global accuracy metric, which
denotes the percentage of correctly labeled samples. For multi-label problems, the mean average
precision (mAP) metric is used, which denotes the mean over the average precision values (integral
over the precision-recall curve) of the individual labels.

5 EXPERIMENTAL RESULTS

5.1 COMPARING IN-DOMAIN REPRESENTATIONS

To obtain in-domain representations, first we train models either from scratch or by fine-tuning Im-
ageNet on each full dataset. The best of these models are then used as in-domain representations to
train models on other remote sensing tasks (excluding the one used to train the in-domain represen-
tation).

For an initial evaluation of the different in-domain representation source data, Table 2 shows a cross-
table evaluating each trained in-domain and ImageNet representation on each of the downstream
tasks. The representations were trained using full datasets upstream, while the down-stream tasks
used only 1000 training examples to better emphasize the differences. As can be seen in this case,
the best results all come from fine-tuning the in-domain representations.

Despite having 2 distinctive groups of high-resolution aerial (RESISC–45, UC Merced) and
medium-resolution satellite datasets (BigEarthNet, EuroSAT and So2Sat), the representations
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Table 3: Accuracy over different training methods and number of used training samples.

BigEarthNet EuroSAT RESISC–45 So2Sat UC Merced
100 1k Full 100 1k Full 100 1k Full 100 1k Full 100 1k Full

Scratch 14.5 21.4 72.4 63.9 91.7 98.5 21.4 56.1 95.6 33.9 47.0 62.1 50.8 91.2 95.7
ImageNet 17.8 25.1 75.4 87.3 96.8 99.1 44.9 84.9 96.6 44.9 53.7 63.1 79.9 99.0 99.2
InDomain 18.8 27.6 69.7 91.3 97.1 99.2 49.0 85.7 96.8 46.4 54.4 63.2 91.0 99.6 99.6

Table 4: Best performance on the selected remote sensing datasets.

Dataset Reference Result Our Result

BigEarthNet 69.93%/77.1% (P/R)(Sumbul et al., 2019) 75.36% (mAP)
EuroSAT 98.57% (Helber et al., 2019) 99.20%
RESISC–45 90.36% (Cheng et al., 2017) 96.83%
So2Sat 63.25%
UC Merced 99.41% (Nogueira et al., 2017) 99.61%

trained on RESISC–45 were able to outperform the others in all tasks (BigEarthNet representa-
tions tied for the UC Merced dataset) and it was the only representation to consistently outperform
ImageNet-based representations. That RESISC–45 would perform so good on both aerial and satel-
lite tasks was unexpected. The reason is likely related to the fact that RESISC–45 is the only dataset
that has images with various resolutions. Combined with the large number of classes that have high
within class diversity and high between-class similarity it seems to be able to train good representa-
tions for a wide range of remote sensing tasks, despite not being a very big dataset.

Counter to the expectation that bigger datasets should train better representations, the two biggest
datasets, BigEarthNet and So2Sat, didn’t provide the best representations (except of BigEarthNet
representations for UC Merced). We hypothesize that this might be due to the weak labeling and the
low training accuracy obtained in these datasets. It is possible that the full potential of these large-
scale datasets was not yet fully utilized and other self- or semi-supervised representation learning
approaches could improve the performance.

5.2 LARGE-SCALE COMPARISON

Having trained in-domain representations, we can now evaluate and compare the transfer quality of
fine-tuning the best in-domain representations with fine-tuning ImageNet and training from scratch
at various training data sizes.

As shown in Table 3, fine-tuning from ImageNet is better than training from scratch. And in all but
one case, fine-tuning from an in-domain representation for transfer is even better.

The only exception is the BigEarthNet dataset at its full size. It is expected that having a large dataset
should reduce the need for pre-training, but the gap between in-domain and ImageNet pre-training
is quite big. We don’t have an explanation for this yet and this needs to be further investigated.

Overall, these results establish new baselines for these datasets (some state-of-the-art), as summa-
rized in Table 4. Note that some results are not comparable: RESISC–45 has been previously
evaluated only on 20% of data, So2Sat has no public benchmarking result to our knowledge, and the
only published result of BigEarthNet is based on a cleaner version of the dataset (after removing the
noisy images containing clouds and snow) and only precision and recall metrics were reported.

5.3 SMALL NUMBER OF TRAINING EXAMPLES REGIME

To look closer into in-domain representation learning for small number of training examples, we
trained models with small training sizes ranging from 25 to 2500 (samples were randomly drawn
disregarding class distributions). We used a simplified set of hyper-parameters that might not deliver
the most optimal performance, but still allows to observe the general trends. As shown in Fig. 1,
the improvement of using in-domain representations is clearly visible for the EuroSAT, RESISC–45
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Figure 1: Top-1 accuracy rate or mean average precision (mAP) on validation set after training with
a given method over a limited number of training examples on each dataset.

and UC Merced datasets. These are the 3 smaller datasets with higher quality labels. The results are
less conclusive for the BigEarthNet and So2Sat datasets that have more noisy labels.

5.4 FURTHER EXPERIMENTS

We performed more experiments using semi- and self-supervised approaches that are common in
representation learning for natural images (Zhai et al., 2019). However, since the results were worse,
we excluded the other approaches from the analysis in this paper for brevity but will report them at
the conference.

6 CONCLUSION

We present a common evaluation benchmark for remote sensing representation learning based on
five diverse datasets. The results demonstrate the enhanced performance of in-domain represen-
tations, especially for tasks with limited number of training samples, and achieve state-of-the-art
performance on the full datasets. The five analyzed datasets and the best trained in-domain repre-
sentations are published for easy reuse by the community in TFDS and TF-Hub.

As the experimental results indicate, having a multi-resolution dataset helps to train more general-
izable representations. Other important factors seem to be label quality, number of classes, visual
similarity across the classes and diversity within the classes. Surprisingly, we observed that repre-
sentations trained on the large weakly-supervised datasets were not as successful as that of a smaller
and more diverse human-curated dataset. However, some results were inconclusive and require more
investigation. Understanding the main factors of a good remote sensing dataset for representation
learning is a major challenge, solving which could improve performance across a wide range of re-
mote sensing tasks and applications. Other future directions include multi-task and multi-modality
representation learning across a wide range of remote sensing data.
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A ADDITIONAL DATASET INFORMATION

This section provides additional information on the used datasets and data sources.

A.1 SENTINEL-2 SATELLITE

Sentinel-2 is a multi-spectral satellite constellation from the European Space Agency (ESA). Since
2017 two satellites are in operation delivering a 5-days revisit at equator and 2-3 days at high lati-
tudes. The characteristics of the 13 bands are presented in Table 5.

Table 5: Sentinel-2 channel characteristics (Abbreviations: NIR: Near Infra-Red, SWIR: Short-
Wavelength Infra-Red).

Band and Highest Sensitivity Target Spatial Resolution [m] Central Wavelength [nm]

B01 - Aerosols 60 443
B02 - Blue 10 490
B03 - Green 10 560
B04 - Red 10 665
B05 - Red edge 1 20 705
B06 - Red edge 2 20 740
B07 - Red edge 3 20 783
B08 - NIR 10 842
B08A - Red edge 4 20 865
B09 - Water vapor 60 945
B10 - Cirrus 60 1375
B11 - SWIR 1 20 1610
B12 - SWIR 2 20 2190
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A.2 BIGEARTHNET

The following figures show some example images and label distribution for the BigEarthNet dataset.

Figure 2: BigEarthNet image examples. Some images might be affected by seasonal snow, clouds
or cloud shadows, which is not reflected in the land cover labels of this dataset. Note that some of
the images (for example samples 4, 6, 21) could be affected by seasonal snow and cloud coverage,
which is not reflected in the labels.

Labels for the examples in Fig. 2:

1. Vineyards, Broad-leaved forest (2 labels)
2. Coniferous forest, Mixed forest, Transitional woodland/shrub (3 labels)
3. Sea and ocean (1 label)
4. Land principally occupied by agriculture, with significant areas of natural vegetation,

Coniferous forest, Mixed forest, Water bodies (4 labels)
5. Non-irrigated arable land, Mixed forest (2 labels)
6. Land principally occupied by agriculture, with significant areas of natural vegetation,

Coniferous forest, Mixed forest, Transitional woodland/shrub (4 labels)
7. Sea and ocean (1 labels)
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8. Coniferous forest, Mixed forest (2 labels)
9. Discontinuous urban fabric, Industrial or commercial units, Coniferous forest, Mixed for-

est, Transitional woodland/shrub (5 labels)
10. Non-irrigated arable land, Pastures (2 labels)
11. Coniferous forest, Mixed forest, Water bodies (3 labels)
12. Sea and ocean (1 labels)
13. Sparsely vegetated areas, Peatbogs (2 labels)
14. Coniferous forest, Mixed forest, Transitional woodland/shrub (3 labels)
15. Continuous urban fabric (1 label)
16. Complex cultivation patterns, Land principally occupied by agriculture, with significant

areas of natural vegetation, Broad-leaved forest (3 labels)
17. Land principally occupied by agriculture, with significant areas of natural vegetation,

Broad-leaved forest, Sclerophyllous vegetation, Transitional woodland/shrub (4 labels)
18. Agro-forestry areas, Broad-leaved forest, Transitional woodland/shrub (3 labels)
19. Non-irrigated arable land, Land principally occupied by agriculture, with significant areas

of natural vegetation, Coniferous forest, Mixed forest (4 labels)
20. Non-irrigated arable land (1 label)
21. Coniferous forest, Mixed forest, Transitional woodland/shrub, Water bodies (4 labels)
22. Coniferous forest, Mixed forest (2 labels)
23. Non-irrigated arable land, Land principally occupied by agriculture, with significant areas

of natural vegetation, Agro-forestry areas, Sclerophyllous vegetation, Transitional wood-
land/shrub, Water bodies (6 labels)

24. Discontinuous urban fabric, Non-irrigated arable land, Inland marshes (3 labels)
25. Land principally occupied by agriculture, with significant areas of natural vegetation,

Broad-leaved forest, Coniferous forest (3 labels)
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Figure 3: BigEarthNet labels distribution counts.
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A.3 EUROSAT

The following figures show some example images and label distribution for the EuroSAT dataset.

Figure 4: EuroSAT image examples.

Figure 5: EuroSAT class distribution counts.
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A.4 RESISC–45

The following figures show some example images and label distribution for the RESISC–45 dataset.

Figure 6: RESISC–45 image examples.

Figure 7: RESISC–45 class distribution counts.
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A.5 SO2SAT

The following figures show some example images and label distribution for the So2Sat dataset.

Figure 8: So2Sat image examples.

Figure 9: So2Sat class distribution counts.
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A.6 UC MERCED

The following figures show some example images and label distribution for the UC Merced dataset.

Figure 10: UC Merced image examples.

Figure 11: UC Merced class distribution counts.
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B TRAINING SETUP

B.1 ARCHITECTURE AND HYPER-PARAMETERS

All the models trained in this work use the ResNet50 v2 architecture (He et al., 2016) and were
trained using SGD with momentum set to 0.9 on large batch sizes 512 or 1024. In total we configure
and sweep only a fixed set of hyper-parameters per model, namely:

• learning rate: {0.1, 0.01},
• weight decay: {0.01, 0.0001},
• training schedules: {short, medium, long},
• preprocessing: {resize, crop & rot} (described in Appendix B.3).

All the 3 training schedules use a linear warm-up for learning rate over the first w steps/epochs
and decrease the learning rate by 10 per each learning phase p in the schedule. The learning rate
schedules are given by:

• short: p = {750, 1500, 2250, 2500} steps, w = 200 steps.
• medium: p = {3000, 6000, 9000, 10000} steps, w = 500 steps.
• long: p = {30, 60, 80, 90} epochs, w = 5 epochs.

These hyperparameter settings follow approximately the setup in (Zhai et al., 2019) with minor mod-
ifications for the schedule and preprocessing. In in inital phase, more extensive hyperparameter sets
were tried out, but with not much effect on the best performance and therefore for the experiments
presented in this paper we limit the configurations to the ones described above.

B.2 DETAILED SWEEPS PER EXPERIMENT

The models for experiments in Table 2 and Table 3 were trained sweeping over all hyper param-
eters. The best performing models obtained from fine-tuning ImageNet were used as in-domain
representations for all experiments (excluding same up- and down-stream dataset configurations).

For Fig. 1, the models were trained by sweeping over the learning rate and using only the short and
medium training schedules. The weight decay was set to 0.0001, and the preprocessing was set to
resize.

B.3 PRE-PROCESSING AND DATA AUGMENTATION

Data pre-processing and augmentation can have a significant impact on performance. Therefore, in
the reported results we used 2 pre-processing settings described below.

• resize - resize the original RGB input to 224x224 both at training and evaluation time.
• crop & rot - during training resize the original RGB input to 256x256, perform a random

crop of 224x224 and apply one of 8 random rotations (90 degrees and horizontal flip).
During evaluation resize to 256x256 and perform a central crop of 224x224.

Table 6 shows the difference of each strategy when fine-tune from ImageNet.

Table 6: Accuracy of each pre-processing strategy when fine-tuning an ImageNet representation.

BigEarthNet EuroSAT RESISC–45 So2Sat UC Merced
100 1k Full 100 1k Full 100 1k Full 100 1k Full 100 1k Full

resize 17.3 24.5 75.4 85.2 96.0 98.9 37.5 78.6 95.8 44.9 51.8 63.1 69.1 98.2 99.2
crop & rot 17.8 25.1 73.4 87.3 96.8 99.1 44.9 84.9 96.6 43.8 53.7 59.6 79.9 99.0 99.2
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