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ABSTRACT

In this paper, we present a multi-task network for simultaneous earthquake detec-
tion and phase picking based on a hierarchical attentive model. Our network con-
sists of one deep encoder and three separate decoders. Two levels of self-attention
(global and local) are embedded into the network in a hierarchical structure that
helps the neural network captures dependencies between local and global features
within an earthquake waveform.The proposed model outperforms deep-learning
and traditional phase-picker and detector algorithms and achieves state-of-the art
performance.

1 INTRODUCTION

Earthquake signal detection and phase picking are challenging problems in earthquake monitoring.
Detection refers to identification of earthquake signals among a wide variety of non-earthquake
signals and noise recorded by a sensor. Seismic phase picking is the measurement of seismic arrival
times of distinct seismic phases (P and S phases) within an earthquake signal that are required for
estimating earthquake location. Although these two tasks share some similarities, their objectives
are slightly different. Minimizing the false negative and false positive rates are the main goals
in detection; however, in phase picking the focus is more on increasing the temporal resolution or
precision of arrival-time picks. This is because 1 millisecond of error in determining P-wave arrivals
can translate to tens of meters of error in location estimates. In the other words, phase picking is
a local problem compared to the detection, which uses a more global view of the full waveform,
which consists of multiple seismic phases.

All previous studies (e.g. Perol et al. (2018), Ross et al. (2018b), Zhu & Beroza (2018), Mousavi
et al. (2019b), Wu et al. (2018), Ross et al. (2018a), Pardo et al. (2019), Zhou et al. (2019), Zhu et al.
(2019), and Wang et al. (2019)) have approached these tasks individually using separate networks;
however, these tasks are closely related to each other. In practice analysts first look at the entire
waveform on multiple stations to identify consistent elements of an earthquake signal (e.g. P, S,
and surface waves) with a specific ordering (P-wave always arrives before S-wave, higher frequency
body waves always precede dispersive surface waves etc.) to determine whether or not a signal is
from an earthquake. Then they will focus on each phase to pick the arrival times more precisely.
This practice indicates the interconnection of these two tasks and the importance of contextual in-
formation in earthquake signal modeling.

Here we test the hypothesis that better representations obtained by incorporating the contextual
information in earthquake waveforms will result in better models. Our expectation is that not all
parts of a seismic signal are equally relevant for a specific classification task, adn that it is beneficial
to determine the relevant sections for modeling the interaction of local and global seismic features.
We achieve this by incorporating attention mechanism into our network. Our model contains two
levels of attention mechanism, one at global level for identifying an earthquake signal in the input
time series and one at local level for identifying different seismic phases within the earthquake
signal.

Our model has several distinct characteristics: 1) it is the first attentive-based model specifically
designed for earthquake signals; 2) it consists of both convolutional and recurrent layers; 3) with
56 activation layers, it is the deepest network that so far has been trained by seismic signals; 4) it
has a multi-task architecture that simultaneously performs the detection and phase picking while
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modeling the dependency of these tasks on each other through a hierarchical structure; 5) it is the
first global model trained using 1.2 M waveform of local earthquakes recorded around the world.

2 RELATED WORK

Perol et al. (2018) used a network of 8 convolutional and one fully connected layers to simultane-
ously detect and cluster events based on three component waveforms. Wu et al. (2018) applied a
densely connected network of 7 fully convolutional layers to detect laboratory earthquakes of dif-
ferent sizes. Ross et al. (2018b) trained a network of 4 convolutional and 2 fully connected layers
using seismograms recorded in Southern California to detect short windows of P, S, and noise. Ross
et al. (2018a) adopted a similar approach (3 convolutional and 2 fully connected layers) for picking
P arrival times. Zhu & Beroza (2018) modified U-Net, a fully convolutional encoder-decoder net-
work with skip connections, for an end-to-end picking of P and S phases. Mousavi et al. (2019b)
used a residual network of convolutional, bi-directional Long Short Term Memory units, and fully
connected layers for detecting earthquake signals in the time-frequency domain. Pardo et al. (2019)
used seismograms from Northern California to train their two-stage phase picker. They used a con-
volutional network for a rough segmentation of phases first, and then performed a regression to pick
the arrival times. Seismic data recorded from Wenchuan Earthquake in Sichuan, China were used by
Zhou et al. (2019) (136 K augmented P and S waveforms) and Zhu et al. (2019) (30 K) for training
deep-leaning -based detectors and pickers. While Zhou et al. (2019) used two separate networks
of 8 convolutional layers and two bi-directional GRU layers for detection and picking respectively,
Zhu et al. (2019) used the same network (11 convolutional and 1 fully connected layers) in a re-
cursive manner for both detection and picking with a cost of more computational time. Wang et al.
(2019) trained a modified version of VGG-16 network using 740K seismograms recorded in Japan
for picking P and S arrival times.

3 METHOD

Seismic signals are sequential time series consisting of different local (individual seismic phases)
and more global (e.g. packages of body and surface waves or scattered waves in the coda) features.
Hence, it is useful to retain the complex interaction between the local and global dependencies in an
end-to-end deep learning model. Traditionally, recurrent neural networks have been used for such
a sequence modeling; however, the relatively long duration of seismic signals requires some down
sampling prior to the recurrent layers to manage the computational complexity. Hence, a combi-
nation of recurrent and convolutional layers has been shown to be optimal for sequential modeling
of seismic signals. Building upon our previous work (Mousavi et al. (2019b)), here we introduce
a multi-task network of recurrent and convolutional layers that incorporates attention mechanism
as well. Attention mechanism is a method of encoding sequence data in which elements within a
sequence will be highlighted or down-weighted based on their importance or irrelevance to a task.

Our neural network has a multi-task structure consisting of one deep encoder and three separate
decoders composed of 1D convolutions, bi-directional and uni-directional Long-Short-Term Mem-
ories (LSTM), Network-in-Network, residual connections, feed-forward layers, transformer, and
self-attentive layers. (Figure 1). More details are provided in the Appendices. The encoder con-
sumes the seismic signals in the time domain and generates a high-level representation and contex-
tual information on their temporal dependencies. Decoders then use this information to map the
high-level features to three sequences of probabilities associated with existence of an earthquake
signal, P-phase, and S-phase for each time point.

In self-attentive models the amount of memory grows with respect to the sequence length. Hence,
we add a down-sampling section composed of convolutional and max-pooling layers to the front
of the encoder. These down sampled features are transformed to high-level representations through
a series of residual convolution and LSTM blocks. A global attention section at the end of the
encoder aims at directing the attention of the network to the parts associated with the earthquake
signal. These high-level features are then directly mapped to a vector of probabilities representing
the existence of an earthquake signal (detection) using one decoder branch. Two other decoder
branches are associated with P-phase and S-phase respectively in which a LSTM/local attention unit
is placed at the beginning. This local attention will further direct the attention of the network into
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local features within the earthquake part that are associated with individual seismic phases. Residual
connections within each block and techniques such as network-in-networks help to expand the depth
of the network while keeping the number of learnable parameters manageable.

Figure 1: Our network architecture. Full details of each block are provided in the method section.
The convolutional layers read as (number of kernels)kr(kernel size).

4 EXPERIMENT SETTINGS

We used the STanford EArthquake Dataset (STEAD) (Mousavi et al. (2019a)) to train this network.
STEAD is a large-scale global dataset of earthquake and non-earthquake signals. Here we used 1 M
earthquake and 200 k noise waveform recorded by seismic stations at local distances (up to 300 km
from the earthquakes). We split the data into training (85%), validation (5%), and test (10%) sets
randomly. Waveforms are 1 minute long with a sampling rate of 100 HZ and have been band-passed
filtered between 1-45 HZ.
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For both convolutional and LSTM units, all the weight and filter matrices were initialized with a
Xavier normal initializer (Glorot & Bengio (2010)) and bias vectors set to zeros. We used ADAM
optimization (Kingma & Ba (2014)) with varying learning rates, while the learning rate varied dur-
ing training. The model took O(5) days to converge using 4 parallel Tesla-V100 GPUs under the
tensorflow framework (Abadi et al. (2016)). We augmented the data by adding a secondary earth-
quake signals into waveforms, adding random noise, randomly shifting the waveform, and randomly
dropping one channel with 0.3, 0.5, 0.9, and 0.3 probabilities respectively. In each batch, half of the
batch are augmented versions of the waveform in the other half. Data augmentation and normaliza-
tion are done simultaneously during the training on 24 CPUs in parallel. We used a dropout rate of
0.1 for all dropout layers.

5 RESULTS

5.1 EXPLORING NETWORK’S ATTENTION

The attention weights define how much of each input state should be considered for predicting each
output, and can be interpreted as a vector of importance weights. By explicitly visualizing these
attention weights we can see which parts of the input sequence, the neural network has learned to
focus on. In Figure 2, the calculated energies (or scoring) for attention layers are presented. This
is a measure of alignment or match between encoder and decoder states and is used by the decoder
to decide on which parts of the source sequence to focus. High energies indicate alignments of
predicted probabilities and corresponding parts of waveform.

Figure 2: Input waveform (bottom boxes), output prediction probabilities (left boxes), and corre-
sponding scoring (central boxes) for a) transformer (I in Figure 1), b) local attention for P-phase (II
in Figure 1), and c) the local attention for S-phase (III in Figure 1).

In Figure 3, the outputs of each of these attention layers (summation of hidden states at all other
time steps, weighted by their scoring) are presented. We can see that the network has learned to
focus on different parts of the waveform at different attention levels. This highlights the most useful
parts of the input waveform for each task. The shorter path through the detection decoder and its
higher loss (due to longer length of label) naturally force the network to first learn to distinguish the
earthquake signal within a time series. This mimics an analyst’s decision making workflow. The
second transformer (I in Figure 1), at the end of encoder section, mainly passes the information
corresponding to the earthquake signal to the subsequent decoders. This means that the encoder
learns to select which parts of the source sequence has the most important information for detection
and phase picking. This information is directly used by the detection decoder to predict existence of
earthquake signal in the time series. The local attention layers at the beginning of P and S decoders
further focus on smaller sections, within the earthquake waveform - primarily near the arrival times
of those phases, to make their predictions.

5.2 PICKING PERFORMANCE

We used more than 100 k test data to evaluate the picking performance and compare it with other
methods. An example of detection and phase picking outputs are presented in Figure 4. We used 7
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Figure 3: Input waveform overlaid by contextual information or outputs of the attention layers for a)
transformer (I in Figure 1), b) local attention for P-phase (II in Figure 1), and c) the local attention
for S-phase (III in Figure 1).

scores (standard deviation of error, mean error, precision, recall, F1-score, mean absolute error, and
mean absolute percentage error) to measure the performance. A pick was considered as true positive
when its absolute distance from the ground truth is less than 0.5 second. The measured scores for
P and S picks are presented in Table 1 and 2 respectively. PhaseNet, GPD, and PickNet are three
deep-leaning-based phase pickers. Kurtosis (KT), frequency band (FB), and Akaike Information
Criteria (AIC) pickers are traditional (non-machine learning) algorithms. Results indicate that our
approach outperforms other phase picking algorithms. Our approach increased the F-scores for P
and S picks about 4%, while the recall is lower for S phase. The improvement in P-wave picks
are more significant than for S-wave picks. This may be due the fact that picking S-waves is much
harder and prone to more errors, which can lead to higher labeling error in the training set. We
compare the detection performance with one deep-learning (DetNet) and one traditional (STA/LTA)
detector in Table 3. The superior performance of the proposed method could be due to several factors
(e.g. attention mechanism, depth of our network, etc). Attention mechanism helps incorporating
global and local scale features within the full waveform. A deeper network can result in more
discriminatory power.

Figure 4: An example of 3 channel input waveform and ground truths (a, b, and c) and prediction
outputs of three decoders.
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Table 1: P-phase picking. µ and σ are mean and standard deviation of errors (ground truth - predic-
tion) in seconds respectively. Pr, Re, and F1 are precision, recall, and F1-score respectively. MAE
and MAPE are mean absolute error and mean absolute percent error respectively.

Model µ σ Pr Re F1 MAE MAPE Reference

This Study 0.00 0.03 0.99 0.99 0.99 0.92 0.15 -
PhaseNet -0.02 0.08 0.96 0.96 0.96 6.83 0.64 Zhu & Beroza (2018)
GPD 0.03 0.10 0.81 0.80 0.81 8.29 1.03 Ross et al. (2018b)
PickNet 0.00 0.09 0.81 0.49 0.61 6.94 1.56 Wang et al. (2019)
KT -0.03 0.09 0.94 0.79 0.86 8.02 0.89 Saragiotis et al. (2002)
FB -0.01 0.08 0.95 0.82 0.88 6.74 0.74 Lomax et al. (2012)
AIC -0.04 0.09 0.92 0.83 0.87 8.50 0.93 Maeda (1985)

Table 2: S-phase picking. µ and σ are mean and standard deviation of errors (ground truth - predic-
tion) in seconds respectively. Pr, Re, and F1 are precision, recall, and F1-score respectively. MAE
and MAPE are mean absolute error and mean absolute percent error respectively.

Model µ σ Pr Re F1 MAE MAPE Reference

This Study 0.00 0.11 0.99 0.96 0.98 8.51 0.50 -
PhaseNet -0.02 0.11 0.96 0.93 0.94 8.86 0.51 Zhu & Beroza (2018)
GPD 0.03 0.14 0.81 0.83 0.82 10.42 0.80 Ross et al. (2018b)
PickNet -0.02 0.13 0.83 0.55 0.66 9.88 2.94 Wang et al. (2019)
KT -0.10 0.13 0.89 0.39 0.55 11.17 0.91 Saragiotis et al. (2002)
FB -0.06 0.12 0.91 0.40 0.56 9.95 0.73 Lomax et al. (2012)
AIC -0.07 0.15 0.87 0.51 0.64 11.63 1.92 Maeda (1985)

Table 3: Detection performance. Pr, Re, and F1 are precision, recall, and F1-score respectively.

Model Pr Re F1 Reference

This Study 1.0 1.0 1.0 -
DetNet 1.0 0.89 0.94 Zhou et al. (2019)
STA/LTA 0.91 1.0 0.95 Allen (1978)

6 CONCLUSION

We propose a multi-task network for simultaneous earthquake detection and phase picking based
on a hierarchical attentive model. Our network consists of one deep encoder and three separate
decoders composed of 1D convolutions, bi-directional and uni-directional Long-Short-Term Mem-
ories (LSTM), Network-in-Network, residual connections, feed-forward layers, transformer, and
self-attentive layers. Two levels of self-attention (global and local) are embedded in the network
in a hierarchical structure that helps the neural network retaining dependencies between local and
global features within an earthquake waveform. Three-component waveform time series are input
to the encoder while the decoders output three sequences of probabilities associated with existence
of an earthquake signal, P-phase, and S-phase for each time point. The proposed model outperforms
existing deep-learning and traditional phase-pickers and detector algorithms to achieve state-of-the
art performance.
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Thibaut Perol, Michaël Gharbi, and Marine Denolle. Convolutional neural network for earthquake
detection and location. Science Advances, 4(2):e1700578, 2018.

7



Under review as a conference paper at ICLR 2020

Zachary E Ross, Men-Andrin Meier, and Egill Hauksson. P wave arrival picking and first-motion
polarity determination with deep learning. Journal of Geophysical Research: Solid Earth, 123
(6):5120–5129, 2018a.

Zachary E Ross, Men-Andrin Meier, Egill Hauksson, and Thomas H Heaton. Generalized seismic
phase detection with deep learning. Bulletin of the Seismological Society of America, 108(5A):
2894–2901, 2018b.

Christos D Saragiotis, Leontios J Hadjileontiadis, and Stavros M Panas. Pai-s/k: A robust automatic
seismic p phase arrival identification scheme. IEEE Transactions on Geoscience and Remote
Sensing, 40(6):1395–1404, 2002.

Matthias Sperber, Jan Niehues, Graham Neubig, Sebastian Stüker, and Alex Waibel. Self-attentional
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A VERY DEEP ENCODER

Several studies (e.g. Zhang et al. (2017), Tan et al. (2018), and Dai et al. (2017)) have shown,
in end-to-end learning from raw waveforms, that employing deeper networks can be beneficial by
having more expressive power, better generalization, and more robustness to noise in waveforms.
Here, we build a very deep encoder that is known to be helpful in improving the performance of a
sequence-to-sequence model with attention.

The encoder consists of several blocks of residual convolution layers and recurrent blocks including
network-in-network connections. Convolutional layers exploit local structure and provide the model
a better temporal invariance, which typically leads to better generalization. To be able to extend
the depth of the network without degradation problem we use blocks of convolutional layers with
residual connections(He et al. (2016)) as depicted in Figure 4.

Long-short term memory (LSTM)(Hochreiter & Schmidhuber (1997)) are specific types of recurrent
neural networks commonly used for modeling longer sequences. The main element in an LSTM unit
is a memory cell. At each time step, an LSTM unit receives an input, outputs a hidden state, and up-
dates the memory cell based on a gate mechanism. Here we expand the bi-directional LSTM blocks
by including Network-in-Network (Lin et al. (2013)) modules in each block that help to increase the
network’s depth without increasing the number of learnable parameters (Figure 2). LSTM layers
prior to self-attention layers, have been shown to be necessary for incorporating positional informa-
tion (Sperber et al. (2018)).

Figure 5: Individual blocks of our neural network. a) ResCNN blocks used in the encoder. Spa-
tial dropout (Sp Dropout)(Tompson et al. (2015)) layers have been used after each ReLU activation
layer which is preceded by a batch normalization (Batch Norm)(Ioffe & Szegedy (2015)). b) Bi-
LSTM/NiN blocks including a Bidirectional LSTM, one convolution layer with one filter sized 1,
batch normalization, ReLU activation layer. RNN Dropout is the recurrent dropout (Gal & Ghahra-
mani (2016)). c) Multi-head self-attention block for global attention. It includes one position-wise
feed-forward network and layer normalization (Ba et al. (2016)).

B ATTENTION MECHANISM

Let’s represent the output of an LSTM layer by h = {ht} ∈ Rn×dh as a sequence of vector elements
(a high level representation of the original input signal). We calculate the self (internal) attention as
follows (Luong et al. (2015) and Yang et al. (2016)):
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et,t′ = σ(WT
2 [tanh(WT

1 ht +WT
1 ht′ + b1)] + b2),(1)

αt,t′ =
exp(et,t′ )∑
t′ exp(et,t′ )

,(2)

ct =
∑dh

t′=1 αt,t′ .ht′ ,(3)

where ht and ht′ are hidden state representations at time steps t and t′ respectively. W and b are
weight matrices and bias vectors respectively.σ is the element-wise sigmoid function. αt,t′ are scalar
scores (also called alignment) indicating pairwise similarities between the elements of the sequence.
The attentive hidden state representation, ct, at time step t is given by summation of hidden states
at all other time steps, ht′ , weighted by their similarities to the current hidden state, αt,t′ . Vector
ct ∈ Rdh is a sequence of contex-aware (with respect to surrounding elements) encoding that defines
how much attention will be given to the features at each time step based on their neighborhood
context. This will be incorporated into a downstream task as additional contextual information to
direct the focus to the important parts of the sequence rather than the less relevant parts.

Here we adopt the residual attention blocks introduced in the Transformer (Vaswani et al. (2017))
by replacing the multi-head scaled-dot product attention by the above single-head additive attention.
The feed-forward layer consists of two linear transformations with a ReLU activation in between,
FF (x) = max(0, xW1 + b1)W2 + b2, intended to introduce additional nonlinearities.

Our goal is to implement two levels of attention mechanisms in a hierarchical structure (Ji et al.
(2017) and Yu et al. (2017)) at the earthquake full waveform and individual phase levels. A logical
way to do this is to perform attention mechanisms at two levels with different temporal resolution.
For instance, applying the detection attention at the high level representation at the end of the encoder
and the phase attention at the end of associated decoders where higher temporal resolutions are
available. However, with O(n2.d) complexity of self-attention, this is not computationally feasible
for the long duration time series (6000 samples) used here. Hence, we applied attention mechanisms
with global and local attentions both at the bottleneck. The attention block at the end of the encoder
performs global attention, by attending to all the positions in the sequence, to learn to identify the
earthquake signals within the input time series. Shortened path from this layer to the detection
encoder and naturally higher detection loss make this learning easier.

Attention blocks at the beginning of phase-picker decoders perform additional local attention by
attending only to a small subset of the sequence (Luong et al. (2015)), to further narrow the focus
to individual seismic phases within the earthquake waveform. One LSTM layer with 16 units is
applied before the first attention block at each level to provide position information (Sperber et al.
(2018)).
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