HydroNets: Leveraging River Structure for Hydrologic Modeling

Zach Moshe⁽¹⁾, Asher Metzger⁽¹⁾, Gal Elidan⁽¹⁾⁽²⁾, Frederik Kratzert⁽⁴⁾, Sella Nevo⁽¹⁾, Ran El-Yaniv⁽¹⁾⁽³⁾

⁽¹⁾Google Research, ⁽²⁾The Hebrew University of Jerusalem, ⁽³⁾Technion - Israel Institute of Technology, ⁽⁴⁾Johannes Kepler University Linz

Flooding Impact

Numbers of people affected by weather-related disasters (1995-2015) (NB: deaths are excluded from the total affected.) Flood Drought Storm Extreme temperature Landslide & Wildfire million 56% 2% 94 millior 2.3 billion 26% 1.1 billion ^a Rodriguez-Llanes, J.M., Ranjan-Dash, S., Degomme, O., Mukho-padhyay, A., Guha-Sapir, D. (2011). "Child malnutrition and recurrent flooding in rural eastern India: a community-based survey". BMJ Open 2001;1: e000109.

The Google Flood Forecasting Initiative

Goal: Scalable, high-accuracy, high-resolution flood forecasts and warnings globally

(currently focusing on riverine floods)

Flood Forecasting in a nutshell

The Data

- Water height Measured by every gauged station on an hourly basis.
 Provided by the Indian Central Water Commission
- Precipitation GSMaP

Based on JAXA's GPM satellite mission

Also exists:

- Temperature, Radiation level, Soil moisture, etc..
- Static catchment features

Leveraging river structure as a prior knowledge

Defining the graph

The Value of Depth

The HydroNets Architecture

Architecture guiding principles

- Causality between basins
- General modeling vs. basin specific
- Data flow should reflect the water flow

Flood Forecasting Initiative

The HydroNets Architecture

The three sub-models:

- **Combiner**: Accounts for the relative importance of sources to their drain.
- Shared: Classical rainfall-runoff hydrological modeling.
- Predictor: Accounts for basin-specific properties.

Addressing Overfitting ("Linear HydroNets")

Improved accuracy

Future Work

- Non-linear sub-models
- Transfer learning for stations with less data
- Adding static basin-features

Questions?

zmoshe@google.com ashermetzger@google.com

